Skip to main content
Log in

Effect of 60 keV argon ion implantation in Makrofol® DE 1-1 on the optical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ion implantation in polymeric materials has recently attracted considerable attention in various technology and science fields. The effect of 60 keV low-energy and high-fluence argon ion implantation in the Makrofol® DE 1-1 polymer on the nonlinear and linear optical properties was investigated. Structural changes of the polymer were studied with Raman spectroscopy to ensure the structural modifications induced by argon ions. Linear optical parameters such as the absorption and refractive index were investigated for the ion-implanted sheets. Direct and indirect optical band gaps were observed to decrease with an increase in argon ion fluence. In addition, an increase in the optical conductivity was found with increasing number of ions implanted in the sheets. The photoluminescence (PL) measurements reveal enhanced PL intensity of higher-fluence ion implanted in contrast to the PL of lower ion implantation fluence. Additionally, nonlinear absorption and optical limiting were investigated via the Z scan technique. The implanted materials have saturable nonlinear absorption, the nonlinear absorption coefficients and the figure of merit were calculated for the investigated samples, and the results show that the implanted argon ion Makrofol is a good candidate for saturable absorbers, optoelectronic devices and medical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Guenther M, Gerlach G, Suchaneck G, Sahre K, Eichhorn K-J, Wolf B, Deineka A, Jastrabik L (2002) Ion-beam induced chemical and structural modification in polymers. Surf Coat Tech 158:108–113

    Google Scholar 

  2. Odzhaev VB, Kozlov IP, Popok VN, Sviridov DV (1998) Ion Implantation Of Polymers. Belorussian State University, Minsk

    Google Scholar 

  3. Wei L, Chen Q, Gu Y (2010) Preparation and characterization of transparent PANI-SIO2 hybrid conducting films. Polym Eng Sci 50(5):986–990

    CAS  Google Scholar 

  4. Das A, Bera S, Dhara S, Patnaik A (1998) Physical and chemical implications of 100 keV H + implantation of laser ablated PPS thin films. Nucl Instrum Methods B 134(3–4):377–384

    CAS  Google Scholar 

  5. Hareesh K, Sanjeev G (2019) Effects of radiations on the properties of polycarbonate. In: Kumar V, Chaudhary B, Sharma V, Verma K (eds) Radiation effects in polymeric material. Springer, Cham, pp 293–318

    Google Scholar 

  6. Helal AG, Nouh SA, El-Khabeary H (2015) Structural changes of Makrofol polymer due to argon ion beam irradiation. J Nucl Ene Sci Power Generat Technol 4(1):2

    Google Scholar 

  7. Tripathy SP, Mishra R, Khathing DT, Kulshrestha A, Dwivedi KK, Srivastava A, Ghosh S, Fink D (2001) Optical absorption studies in heavy ion irradiated polymers. Radiat Eff Defect Solids 153:335–341

    CAS  Google Scholar 

  8. Stepanov AL (2004) Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Tech Phys 49(2):143–153

    CAS  Google Scholar 

  9. Bityurin N, Alexandrov A, Afanasiev A, Agareva N, Pikulin A, Sapogova N, Smirnova L (2013) Photoinduced nanocomposites—creation, modification, linear and nonlinear optical properties. Appl Phys A 112(1):135–138

    CAS  Google Scholar 

  10. Smirnov AB, Savkina RK, Nasieka IM, Strelchuk VV, Demchenko IN, Kryshtab T (2018) Optical characterization of the HgCdTe-based composite structure obtained by Ag ion implantation. J Mater Sci: Mater Electr 29(18):15708–15714

    CAS  Google Scholar 

  11. Qiu F, Narusawa T (2011) Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides. Optic Mater 33(3):527–530

    CAS  Google Scholar 

  12. Jubera M, Villarroel J, García-Cabañes A, Carrascosa M, Olivares J, Agullo-López F, Ramiro JB (2012) Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation. Appl Phys B 107(1):157–162

    CAS  Google Scholar 

  13. Jia CL, Li S, Song XX (2017) Optical and structural properties of Nd: MgO: LiNbO3 crystal irradiated by 2.8-MeV He ions. Appl Phys B 123(7):206

    Google Scholar 

  14. Litrico G, Zimbone M, Baratta G, Marino ADM, Musumeci P (2010) Point defects reactions in ion irradiated SiC. Nucl Inst Methods Phys Res B 268(19):2947–2950

    CAS  Google Scholar 

  15. Li B, Xiang X, Liao W, Han S, Yu J, Jiang X, Fu Y (2019) Improved laser induced damage thresholds of Ar ion implanted fused silica at different ion fluences. Appl Surf Sci 471:786–794

    CAS  Google Scholar 

  16. Zdorovets MV, Kozlovskiy AL (2018) Argon ion irradiation effect on Zn nanotubes. J Mater Sci: Mater Electr 29(5):3621–3630

    CAS  Google Scholar 

  17. Bérerd N, Moncoffre N, Chevarier A, Jaffrézic H, Faust H, Balanzat E (2006) Study of the zirconium oxidation under heavy ion irradiation. Nucl Inst Methods Phys Res B 249(1–2):513–516

    Google Scholar 

  18. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM–The stopping and range of ions in matter. Nucl Inst Methods Phys Res B 268(11–12):1818–1823

    CAS  Google Scholar 

  19. Kondyurin A, Bilek M (2014) Ion beam treatment of polymers: application aspects from medicine to space, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  20. Hnatowicz V, Fink D (2004) Fundamental of ion irradiated polymers. Springer, Berlin

    Google Scholar 

  21. Stuart BH, Thomas PS (1995) Xylene swelling of polycarbonate studied using Fourier transform Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 51(12):2133–2137

    Google Scholar 

  22. Goyal PK, Kumar V, Gupta R, Mahendia S, Kumar S (2012) Modification of polycarbonate surface by Ar+ ion implantation for various optoelectronic applications. Vacuum 86(8):1087–1091

    CAS  Google Scholar 

  23. Nouh SA, Amer H, Remon SW (2009) Effect of neutron dose on the structural properties of Makrofol polycarbonate. Nucl Inst Methods Phys Res B 267(7):1129–1134

    CAS  Google Scholar 

  24. Sharma T, Aggarwal S, Sharma A, Kumar S, Kanjilal D, Deshpande SK, Goyal PS (2007) Effect of nitrogen ion implantation on the optical and structural characteristics of CR-39 polymer. J Appl Phys 102(6):063527

    Google Scholar 

  25. Valenza A, Visco AM, Torrisi L, Campo N (2004) Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation. Polymer 45(5):1707–1715

    CAS  Google Scholar 

  26. Lee EH (1999) Ion-beam modification of polymeric materials–fundamental principles and applications. Nucl Inst Methods Phys Res B 151(1–4):29–41

    CAS  Google Scholar 

  27. Lal S, Quamara JK (2014) Effects of 100 MeV O7+ ion beam irradiation on the optical, chemical and structural properties of NCO-terminated polybutadiene based liquid crystalline polyurethane. Vacuum 105:7–10

    CAS  Google Scholar 

  28. Chen JS, Lau SP, Sun Z, Tay BK, Yu GQ, Zhu FY, Xu HJ (2001) Structural and mechanical properties of nitrogen ion implanted ultrahigh molecular weight polyethylene. Surf Coat Technol 138(1):33–38

    CAS  Google Scholar 

  29. Mallick B, Patel T, Behera RC, Sarangi SN, Sahu SN, Choudhury RK (2006) Microstrain analysis of proton irradiated PET microfiber. Nucl Inst Methods Phys Res B 248(2):305–310

    CAS  Google Scholar 

  30. Donya H, Taha TA (2018) Preparation, structure and optical properties of ZnTe and PbTe nanocrystals grown in fluorophosphate glass. J Mater Sci: Mater Electr 29(10):8610–8616

    CAS  Google Scholar 

  31. Donia H, El-Hofy M, El- Samman H, Hussein AA, Rammah Y, Shehata M (2015) Etching and Optical Properties of Gamma Irradiated Makrofol DE 1-1 Nuclear Track. J Nucl Res Dev 10:59–62

    Google Scholar 

  32. Taha TA (2019) Optical properties of PVC/Al2O3 nanocomposite films. Polym Bull 76(2):903–918

    CAS  Google Scholar 

  33. Fink D, Klett R, Chadderton LT, Cardoso J, Montiel R, Vazquez H, Karanovich AA (1996) Carbonaceous clusters in irradiated polymers as revealed by small angle X-ray scattering and ESR. Nucl Inst Methods Phys Res B 111(3–4):303–314

    CAS  Google Scholar 

  34. Taha TA, Hendawy N, El-Rabaie S, Esmat A, El-Mansy MK (2018) Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym Bull 76:1–16

    Google Scholar 

  35. El Sayed AM, El-Sayed S, Morsi WM, Mahrous S, Hassen A (2014) Synthesis, characterization, optical, and dielectric properties of polyvinyl chloride/cadmium oxide nanocomposite films. Polym Compos 35(9):1842–1851

    CAS  Google Scholar 

  36. Abdel-Baset T, Elzayat M, Mahrous S (2016) Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int J Polym Sci 2016:1–10

    Google Scholar 

  37. Yakuphanoglu F, Barım G, Erol I (2007) The effect of FeCl 3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films. Phys Rev B: Condens Matter 391(1):136–140

    CAS  Google Scholar 

  38. Abdul Nabi M, Yusop RM, Yousif E, Abdullah BM, Salimon J, Salih N, Zubairi SI (2014) Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int J Polym Sci 2014:697–809

    Google Scholar 

  39. Swanepoel R (1983) Determination of the thickness and optical constants of amorphous silicon. J Phys E: Sci Instrum 16(12):1214

    CAS  Google Scholar 

  40. Kohoutek T, Orava J, Sawada T, Fudouzi H (2011) Inverse opal photonic crystal of chalcogenide glass by solution processing. J Colloid Interface Sci 353(2):454–458

    CAS  PubMed  Google Scholar 

  41. Leguijt C, Lölgen P, Eikelboom JA, Weeber AW, Schuurmans FM, Sinke WC, Verhoef LA (1996) Low temperature surface passivation for silicon solar cells. Sol Energy Mater Sol Cells 40(4):297–345

    CAS  Google Scholar 

  42. Oubaha M, Elmaghrum S, Copperwhite R, Corcoran B, McDonagh C, Gorin A (2012) Optical properties of high refractive index thin films processed at low-temperature. Opt Mater 34(8):1366–1370

    CAS  Google Scholar 

  43. Cusano A, Iadicicco A, Paladino D, Campopiano S, Cutolo A, Giordano M (2007) Micro-structured fiber Bragg gratings. Part II: towards advanced photonic devices. Opt Fiber Technol 13:291–301

    CAS  Google Scholar 

  44. Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(4):1338

    Google Scholar 

  45. Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Determination and analysis of the dispersive optical constants of some organic thin films. Phys B 351(1–2):53–58

    CAS  Google Scholar 

  46. Sakr GB, Yahia IS, Fadel M, Fouad SS, Romčević N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloys Compd 507(2):557–562

    CAS  Google Scholar 

  47. Fadel M, Fayek SA, Abou-Helal MO, Ibrahim MM, Shakra AM (2009) Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J Alloys Comp 485(1):604–609

    CAS  Google Scholar 

  48. Park WD (2012) Optical constants and dispersion parameters of CdS thin film prepared by chemical bath deposition. Trans Electr Electron mater 13(4):196–199

    Google Scholar 

  49. Ziegler JF (2012) Ion implantation science and technology. Elsevier, Amsterdam

    Google Scholar 

  50. Rothberg LJ, Yan M, Papadimitrakopoulos F, Galvin ME, Kwock EW, Miller TM (1996) Photophysics of phenylenevinylene polymers. Synth Metals 80(1):41–58

    CAS  Google Scholar 

  51. Charles A (1960) Atomic radiation and polymers. Pergamon Press, Oxford

    Google Scholar 

  52. Tsvetkova T, Balabanov S, Avramov L, Borisova E, Angelov I, Sinning S, Bischoff L (2009) Photoluminescence enhancement in Si + implanted PMMA. Vacuum 83:S252–S255

    CAS  Google Scholar 

  53. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 6(4):760–769

    Google Scholar 

  54. Sankar P, Philip R (2018) Nonlinear optical properties of nanomaterials. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Characterization of nanomaterials. Woodhead Publishing, Amsterdam, pp 301–334

    Google Scholar 

  55. Huang J, Dong N, Zhang S, Sun Z, Zhang W, Wang J (2017) Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets. ACS Photonics 4(12):3063–3070

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-156-130-1439). The author, therefore, acknowledges the DSR technical and financial support. The authors would like to thank A. Hussein, M. El Ghazaly, G. Abdel Fattah, S. Hassab Elnaby and C. Peaucelle for their fruitful efforts to achieve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam Donya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donya, H., Salah, A. Effect of 60 keV argon ion implantation in Makrofol® DE 1-1 on the optical properties. Polym. Bull. 77, 6349–6375 (2020). https://doi.org/10.1007/s00289-019-03072-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03072-8

Keywords

Navigation