Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Supramolecular polymerization through kinetic pathway control and living chain growth

Abstract

Supramolecular polymers exhibit fascinating structures, and their properties, and thus applications, depend both on the strength and dynamics of the non-covalent bonds and on the functional properties of the monomeric building blocks. In this Review, we highlight the progress in methods developed to control supramolecular polymerization based on physicochemical insights into the thermodynamics and kinetics of non-covalent interactions. Prerequisites for polymer formation and stability, such as high binding strength (thermodynamics) between complementary receptor units, are briefly discussed, while the main focus is on the kinetic control of pathway selectivity, which in recent years has allowed seed-induced living supramolecular polymerization, chain growth-type supramolecular polymerization and the preparation of specific supramolecular polymer polymorphs and supramolecular block copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the advances in supramolecular polymer chemistry.
Fig. 2: Supramolecular polymerization mechanisms for π scaffolds controlled by thermodynamics.
Fig. 3: Kinetically controlled supramolecular polymerization.
Fig. 4: Pathway control in supramolecular polymerization.
Fig. 5: Schematic illustration and aggregation profiles of a SSP.
Fig. 6: Concepts of kinetic trapping for living supramolecular polymerization.
Fig. 7: Supramolecular block copolymer synthesis.

Similar content being viewed by others

References

  1. Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (Wiley, 2013).

  2. Pedersen, C. J. The discovery of crown ethers (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).

    Google Scholar 

  3. Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Google Scholar 

  4. Lehn, J.-M. Supramolecular chemistry — scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Google Scholar 

  5. Lehn, J.-M. Perspectives in supramolecular chemistry — from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl. 29, 1304–1319 (1990).

    Google Scholar 

  6. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    PubMed  Google Scholar 

  7. Fouquey, C., Lehn, J. M. & Levelut, A.-M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

    CAS  Google Scholar 

  8. Scheibe, G. Über die veränderlichkeit der absorptionsspektren in lösungen und die nebenvalenzen als ihre ursache. Angew. Chem. 50, 212–219 (1937).

    CAS  Google Scholar 

  9. Scheibe, G., Kandler, L. & Ecker, H. Polymerisation und polymere adsorption als ursache neuartiger absorptionsbanden von organischen farbstoffen. Naturwissenschaften 25, 75 (1937).

    CAS  Google Scholar 

  10. Jelley, E. E. Spectral absorption and fluorescence of dyes in the molecular state. Nature 138, 1009–1010 (1936).

    CAS  Google Scholar 

  11. Jelley, E. E. Molecular, nematic and crystal states of I: I’-diethyl-ψ-cyanine chloride. Nature 139, 631–632 (1937).

    CAS  Google Scholar 

  12. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).

    CAS  PubMed  Google Scholar 

  13. Daltrozzo, E., Scheibe, G., Gschwind, K. & Haimerl, F. On the structure of the J-aggregates of pseudoisocyanine. Photogr. Sci. Eng. 18, 441–450 (1974).

    CAS  Google Scholar 

  14. von Berlepsch, H., Böttcher, C. & Dähne, L. Structure of J-aggregates of pseudoisocyanine dye in aqueous solution. J. Phys. Chem. B 104, 8792–8799 (2000).

    Google Scholar 

  15. Klug, A. The tobacco mosaic virus particle: structure and assembly. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 531–535 (1999).

    CAS  Google Scholar 

  16. Klug, A. From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopy. Annu. Rev. Biochem. 79, 1–35 (2010).

    CAS  PubMed  Google Scholar 

  17. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    CAS  PubMed  Google Scholar 

  18. Rybtchinski, B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 5, 6791–6818 (2011).

    CAS  PubMed  Google Scholar 

  19. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

    CAS  PubMed  Google Scholar 

  21. Yang, L., Tan, X., Wang, Z. & Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015).

    CAS  PubMed  Google Scholar 

  22. Busseron, E., Ruff, Y., Moulin, E. & Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5, 7098–7140 (2013).

    CAS  PubMed  Google Scholar 

  23. Yang, S. K. & Zimmerman, S. C. Hydrogen bonding modules for use in supramolecular polymers. Isr. J. Chem. 53, 511–520 (2013).

    CAS  Google Scholar 

  24. Winter, A. & Schubert, U. S. Synthesis and characterization of metallo-supramolecular polymers. Chem. Soc. Rev. 45, 5311–5357 (2016).

    CAS  PubMed  Google Scholar 

  25. Chen, Z., Lohr, A., Saha-Möller, C. R. & Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 38, 564–584 (2009).

    CAS  PubMed  Google Scholar 

  26. Würthner, F. Dipole–dipole Interaction driven self-assembly of merocyanine dyes: from dimers to nanoscale objects and supramolecular materials. Acc. Chem. Res. 49, 868–876 (2016).

    PubMed  Google Scholar 

  27. Dong, S., Zheng, B., Wang, F. & Huang, F. Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc. Chem. Res. 47, 1982–1994 (2014).

    CAS  PubMed  Google Scholar 

  28. Xue, M., Yang, Y., Chi, X., Yan, X. & Huang, F. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115, 7398–7501 (2015).

    CAS  PubMed  Google Scholar 

  29. Zhou, J., Yu, G. & Huang, F. Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 46, 7021–7053 (2017).

    CAS  PubMed  Google Scholar 

  30. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    CAS  PubMed  Google Scholar 

  31. Castellano, R. K., Rudkevich, D. M. & Rebek, J. Polycaps: reversibly formed polymeric capsules. Proc. Natl Acad. Sci. USA 94, 7132–7137 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Castellano, R. K. et al. Hierarchy of order in liquid crystalline polycaps. Angew. Chem. Int. Ed. 38, 2603–2606 (1999).

    CAS  Google Scholar 

  33. Castellano, R. K., Clark, R., Craig, S. L., Nuckolls, C. & Rebek, J. Emergent mechanical properties of self-assembled polymeric capsules. Proc. Natl Acad. Sci. USA 97, 12418–12421 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Velten, U. & Rehahn, M. First synthesis of soluble, well defined coordination polymers from kinetically unstable copper(I) complexes. Chem. Commun. 2639−2640 (1996).

  35. Rest, C., Kandanelli, R. & Fernández, G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem. Soc. Rev. 44, 2543–2572 (2015).

    CAS  PubMed  Google Scholar 

  36. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    PubMed  Google Scholar 

  37. Pasternack, R. F. et al. Aggregation kinetics of extended porphyrin and cyanine dye assemblies. Biophys. J. 79, 550–560 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogi, S., Fukui, T., Jue, M. L., Takeuchi, M. & Sugiyasu, K. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design. Angew. Chem. Int. Ed. 53, 14363–14367 (2014).

    CAS  Google Scholar 

  39. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    CAS  PubMed  Google Scholar 

  40. Fukui, T. et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 9, 493–499 (2017).

    CAS  PubMed  Google Scholar 

  41. Venkata Rao, K., Miyajima, D., Nihonyanagi, A. & Aida, T. Thermally bisignate supramolecular polymerization. Nat. Chem. 9, 1133–1139 (2017).

    CAS  PubMed  Google Scholar 

  42. Mabesoone, M. F. J. et al. Competing interactions in hierarchical porphyrin self-assembly introduce robustness in pathway complexity. J. Am. Chem. Soc. 140, 7810–7819 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Micali, N. et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012).

    CAS  PubMed  Google Scholar 

  44. Helmich, F. et al. Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew. Chem. Int. Ed. 49, 3939–3942 (2010).

    CAS  Google Scholar 

  45. Fernández, G., Stolte, M., Stepanenko, V. & Würthner, F. Cooperative supramolecular polymerization: comparison of different models applied on the self-assembly of bis(merocyanine) dyes. Chem. Eur. J. 19, 206–217 (2013).

    PubMed  Google Scholar 

  46. Würthner, F., Yao, S. & Beginn, U. Highly ordered merocyanine dye assemblies by supramolecular polymerization and hierarchical self-organization. Angew. Chem. Int. Ed. 42, 3247–3250 (2003).

    Google Scholar 

  47. Yao, S., Beginn, U., Gress, T., Lysetska, M. & Würthner, F. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation. J. Am. Chem. Soc. 126, 8336–8348 (2004).

    CAS  PubMed  Google Scholar 

  48. Lohr, A., Lysetska, M. & Würthner, F. Supramolecular stereomutation in kinetic and thermodynamic self-assembly of helical merocyanine dye nanorods. Angew. Chem. Int. Ed. 44, 5071–5074 (2005).

    CAS  Google Scholar 

  49. Lohr, A. & Würthner, F. Evolution of homochiral helical dye assemblies: involvement of autocatalysis in the “majority-rules” effect. Angew. Chem. Int. Ed. 47, 1232–1236 (2008).

    CAS  Google Scholar 

  50. Schenning, A. P. H. J., Jonkheijm, P., Peeters, E. & Meijer, E. W. Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylene vinylene)s. J. Am. Chem. Soc. 123, 409–416 (2001).

    CAS  Google Scholar 

  51. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    CAS  PubMed  Google Scholar 

  52. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    CAS  PubMed  Google Scholar 

  53. Korevaar, P. A., Schaefer, C., de Greef, T. F. A. & Meijer, E. W. Controlling chemical self-assembly by solvent-dependent dynamics. J. Am. Chem. Soc. 134, 13482–13491 (2012).

    CAS  PubMed  Google Scholar 

  54. Würthner, F. et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2016).

    PubMed  Google Scholar 

  55. Kaiser, T. E., Wang, H., Stepanenko, V. & Würthner, F. Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes. Angew. Chem. Int. Ed. 46, 5541–5544 (2007).

    CAS  Google Scholar 

  56. Kaiser, T. E., Stepanenko, V. & Würthner, F. Fluorescent J-aggregates of core-substituted perylene bisimides: studies on structure−property relationship, nucleation−elongation mechanism, and sergeants-and-soldiers principle. J. Am. Chem. Soc. 131, 6719–6732 (2009).

    CAS  PubMed  Google Scholar 

  57. Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300–3307 (2015).

    CAS  PubMed  Google Scholar 

  58. Ogi, S., Stepanenko, V., Thein, J. & Würthner, F. Impact of alkyl spacer length on aggregation pathways in kinetically controlled supramolecular polymerization. J. Am. Chem. Soc. 138, 670–678 (2016).

    CAS  PubMed  Google Scholar 

  59. Wagner, W., Wehner, M., Stepanenko, V., Ogi, S. & Würthner, F. Living supramolecular polymerization of a perylene bisimide dye into fluorescent J-aggregates. Angew. Chem. Int. Ed. 56, 16008–16012 (2017).

    CAS  Google Scholar 

  60. Krieg, E., Weissman, H., Shimoni, E., Bar On, A. & Rybtchinski, B. Understanding the effect of fluorocarbons in aqueous supramolecular polymerization: ultrastrong noncovalent binding and cooperativity. J. Am. Chem. Soc. 136, 9443–9452 (2014).

    CAS  PubMed  Google Scholar 

  61. Kulkarni, C. et al. Dipole-moment-driven cooperative supramolecular polymerization. J. Am. Chem. Soc. 137, 3924–3932 (2015).

    CAS  PubMed  Google Scholar 

  62. Smulders, M. M. J., Schenning, A. P. H. J. & Meijer, E. W. Insight into the mechanisms of cooperative self-assembly:  the “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides. J. Am. Chem. Soc. 130, 606–611 (2008).

    CAS  PubMed  Google Scholar 

  63. Matsumoto, N. M. et al. Polymorphism in benzene-1,3,5-tricarboxamide supramolecular assemblies in water: a subtle trade-off between structure and dynamics. J. Am. Chem. Soc. 140, 13308–13316 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Smulders, M. M. J. et al. Cooperative two-component self-assembly of mono- and ditopic monomers. Macromolecules 44, 6581–6587 (2011).

    CAS  Google Scholar 

  65. Albertazzi, L. et al. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science 344, 491–495 (2014).

    CAS  PubMed  Google Scholar 

  66. Brixner, T., Hildner, R., Köhler, J., Lambert, C. & Würthner, F. Exciton transport in molecular aggregates — from natural antennas to synthetic chromophore systems. Adv. Energy Mater. 7, 1700236 (2017).

    Google Scholar 

  67. Zhao, D. & Moore, J. S. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).

    CAS  PubMed  Google Scholar 

  68. Martin, R. B. Comparisons of indefinite self-association models. Chem. Rev. 96, 3043–3064 (1996).

    CAS  PubMed  Google Scholar 

  69. Smulders, M. M. J. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    CAS  PubMed  Google Scholar 

  70. Goldstein, R. F. & Stryer, L. Cooperative polymerization reactions. Analytical approximations, numerical examples, and experimental strategy. Biophys. J. 50, 583–599 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gershberg, J., Fennel, F., Rehm, T. H., Lochbrunner, S. & Würthner, F. Anti-cooperative supramolecular polymerization: a new K 2K model applied to the self-assembly of perylene bisimide dye proceeding via well-defined hydrogen-bonded dimers. Chem. Sci. 7, 1729–1737 (2016).

    CAS  PubMed  Google Scholar 

  72. Ercolani, G., Mandolini, L., Mencarelli, P. & Roelens, S. Macrocyclization under thermodynamic control. A theoretical study and its application to the equilibrium cyclooligomerization of β-propiolactone. J. Am. Chem. Soc. 115, 3901–3908 (1993).

    CAS  Google Scholar 

  73. Fennel, F. et al. Biphasic self-assembly pathways and size-dependent photophysical properties of perylene bisimide dye aggregates. J. Am. Chem. Soc. 135, 18722–18725 (2013).

    CAS  PubMed  Google Scholar 

  74. Liu, Y. et al. Coupled cooperative supramolecular polymerization: a new model applied to the competing aggregation pathways of an amphiphilic aza-BODIPY dye into spherical and rod-like aggregates. Chem. Eur. J. 24, 16388–16394 (2018).

    CAS  PubMed  Google Scholar 

  75. Kulkarni, C., Balasubramanian, S. & George, S. J. What molecular features govern the mechanism of supramolecular polymerization? ChemPhysChem 14, 661–673 (2013).

    CAS  PubMed  Google Scholar 

  76. Würthner, F., Thalacker, C., Diele, S. & Tschierske, C. Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. Chem. Eur. J. 7, 2245–2253 (2001).

    PubMed  Google Scholar 

  77. Heek, T. et al. Highly fluorescent water-soluble polyglycerol-dendronized perylene bisimide dyes. Chem. Commun. 46, 1884–1886 (2010).

    CAS  Google Scholar 

  78. Babu, S. S., Praveen, V. K. & Ajayaghosh, A. Functional π-gelators and their applications. Chem. Rev. 114, 1973–2129 (2014).

    CAS  PubMed  Google Scholar 

  79. Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oosawa, F. & Kasai, M. A theory of linear and helical aggregations of macromolecules. J. Mol. Biol. 4, 10–21 (1962).

    CAS  PubMed  Google Scholar 

  81. Powers, E. T. & Powers, D. L. The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the “supercritical concentration”. Biophys. J. 91, 122–132 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Haedler, A. T. et al. Pathway complexity in the enantioselective self-assembly of functional carbonyl-bridged triarylamine trisamides. J. Am. Chem. Soc. 138, 10539–10545 (2016).

    CAS  PubMed  Google Scholar 

  83. Yamamoto, T. et al. Stabilization of a kinetically favored nanostructure:  surface romp of self-assembled conductive nanocoils from a norbornene-appended hexa-peri-hexabenzocoronene. J. Am. Chem. Soc. 128, 14337–14340 (2006).

    CAS  PubMed  Google Scholar 

  84. Chen, Z. et al. Near-IR absorbing J-aggregate of an amphiphilic BF2-azadipyrromethene dye by kinetic cooperative self-assembly. Angew. Chem. Int. Ed. 56, 5729–5733 (2017).

    CAS  Google Scholar 

  85. Tidhar, Y., Weissman, H., Wolf, S. G., Gulino, A. & Rybtchinski, B. Pathway-dependent self-assembly of perylene diimide/peptide conjugates in aqueous medium. Chem. Eur. J. 17, 6068–6075 (2011).

    CAS  PubMed  Google Scholar 

  86. Korevaar, P. A., Newcomb, C. J., Meijer, E. W. & Stupp, S. I. Pathway selection in peptide amphiphile assembly. J. Am. Chem. Soc. 136, 8540–8543 (2014).

    CAS  PubMed  Google Scholar 

  87. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    CAS  PubMed  Google Scholar 

  88. Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).

    CAS  PubMed  Google Scholar 

  89. Zang, L., Che, Y. & Moore, J. S. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 41, 1596–1608 (2008).

    CAS  PubMed  Google Scholar 

  90. Yagai, S. et al. Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states. Nat. Commun. 5, 4013 (2014).

    CAS  PubMed  Google Scholar 

  91. Komiya, N. et al. Ultrasound-induced emission enhancement based on structure-dependent homo- and heterochiral aggregations of chiral binuclear platinum complexes. J. Am. Chem. Soc. 133, 16054–16061 (2011).

    CAS  PubMed  Google Scholar 

  92. Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2016).

    CAS  PubMed  Google Scholar 

  93. Besenius, P. Controlling supramolecular polymerization through multicomponent self-assembly. J. Polym. Sci. Part A Polym. Chem. 55, 34–78 (2017).

    CAS  Google Scholar 

  94. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    CAS  PubMed  Google Scholar 

  95. Boekhoven, J. et al. Catalytic control over supramolecular gel formation. Nat. Chem. 5, 433–437 (2013).

    CAS  PubMed  Google Scholar 

  96. Leira-Iglesias, J., Sorrenti, A., Sato, A., Dunne, P. A. & Hermans, T. M. Supramolecular pathway selection of perylenediimides mediated by chemical fuels. Chem. Commun. 52, 9009–9012 (2016).

    CAS  Google Scholar 

  97. Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).

    CAS  PubMed  Google Scholar 

  98. Kumar, M. et al. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis. Nat. Commun. 5, 5793 (2014).

    CAS  PubMed  Google Scholar 

  99. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    PubMed  Google Scholar 

  100. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    CAS  PubMed  Google Scholar 

  101. Lohr, A. & Würthner, F. Chiral amplification, kinetic pathways, and morphogenesis of helical nanorods upon self-assembly of dipolar merocyanine dyes. Isr. J. Chem. 51, 1052–1066 (2011).

    CAS  Google Scholar 

  102. van der Zwaag, D. et al. Kinetic analysis as a tool to distinguish pathway complexity in molecular assembly: an unexpected outcome of structures in competition. J. Am. Chem. Soc. 137, 12677–12688 (2015).

    PubMed  Google Scholar 

  103. Korevaar, P. A., de Greef, T. F. A. & Meijer, E. W. Pathway complexity in π-conjugated materials. Chem. Mater. 26, 576–586 (2014).

    CAS  Google Scholar 

  104. Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sevim, S. et al. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures. Chem. Soc. Rev. 47, 3788–3803 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Olivier, Y. et al. 25th Anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 2119–2136 (2014).

    CAS  PubMed  Google Scholar 

  107. Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ogi, S., Grzeszkiewicz, C. & Würthner, F. Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates. Chem. Sci. 9, 2768–2773 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cai, K. et al. Concurrent cooperative J-aggregates and anticooperative H-aggregates. J. Am. Chem. Soc. 140, 5764–5773 (2018).

    CAS  PubMed  Google Scholar 

  110. Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering:  supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    CAS  PubMed  Google Scholar 

  111. Langenstroer, A. et al. Unraveling concomitant packing polymorphism in metallosupramolecular polymers. J. Am. Chem. Soc. 141, 5192–5200 (2019).

    CAS  PubMed  Google Scholar 

  112. Wehner, M. et al. Supramolecular polymorphism in one-dimensional self-assembly by kinetic pathway control. J. Am. Chem. Soc. 141, 6092–6107 (2019).

    CAS  PubMed  Google Scholar 

  113. Kemper, B. et al. Kinetically controlled stepwise self-assembly of AuI-metallopeptides in water. J. Am. Chem. Soc. 140, 534–537 (2018).

    CAS  PubMed  Google Scholar 

  114. Matern, J., Dorca, Y., Sánchez, L. & Fernández, G. Revising complex supramolecular polymerization under kinetic and thermodynamic control. Angew. Chem. Int. Ed. 58, 16730–16740 (2019).

    CAS  Google Scholar 

  115. Doyle, S. M., Genest, O. & Wickner, S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat. Rev. Mol. Cell Biol. 14, 617–629 (2013).

    CAS  PubMed  Google Scholar 

  116. Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Adamcik, J. & Mezzenga, R. Amyloid polymorphism in the protein folding and aggregation energy landscape. Angew. Chem. Int. Ed. 57, 8370–8382 (2018).

    CAS  Google Scholar 

  118. Van Zee, N. J. et al. Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature 558, 100–103 (2018).

    PubMed  Google Scholar 

  119. Ribó, J. M., Crusats, J., Sagués, F., Claret, J. & Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001).

    PubMed  Google Scholar 

  120. Endo, M. et al. Photoregulated living supramolecular polymerization established by combining energy landscapes of photoisomerization and nucleation–elongation processes. J. Am. Chem. Soc. 138, 14347–14353 (2016).

    CAS  PubMed  Google Scholar 

  121. Odian, G. Principles of Polymerization 4th edn (Wiley, 2004).

  122. Szwarc, M., Levy, M. & Milkovich, R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J. Am. Chem. Soc. 78, 2656–2657 (1956).

    CAS  Google Scholar 

  123. Webster, O. W. Living polymerization methods. Science 251, 887–893 (1991).

    CAS  PubMed  Google Scholar 

  124. Fukui, T. et al. Direct observation and manipulation of supramolecular polymerization by high-speed atomic force microscopy. Angew. Chem. Int. Ed. 57, 15465–15470 (2018).

    CAS  Google Scholar 

  125. Valera, J. S., Gómez, R. & Sánchez, L. Tunable energy landscapes to control pathway complexity in self-assembled N-heterotriangulenes: living and seeded supramolecular polymerization. Small 14, 1702437 (2018).

    Google Scholar 

  126. Ogi, S., Matsumoto, K. & Yamaguchi, S. Seeded polymerization through the interplay of folding and aggregation of an amino-acid-based diamide. Angew. Chem. Int. Ed. 57, 2339–2343 (2018).

    CAS  Google Scholar 

  127. Greciano, E. E., Matarranz, B. & Sánchez, L. Pathway complexity versus hierarchical self-assembly in N-annulated perylenes: structural effects in seeded supramolecular polymerization. Angew. Chem. Int. Ed. 57, 4697–4701 (2018).

    CAS  Google Scholar 

  128. Bernstein, J. Polymorphism in Molecular Crystals (Oxford Univ. Press, 2002).

  129. Greciano, E. E. & Sánchez, L. Seeded supramolecular polymerization in a three-domain self-assembly of an N-annulated perylenetetracarboxamide. Chem. Eur. J. 22, 13724–13730 (2016).

    CAS  PubMed  Google Scholar 

  130. Kar, H., Ghosh, G. & Ghosh, S. Solvent geometry regulated cooperative supramolecular polymerization. Chem. Eur. J. 23, 10536–10542 (2017).

    CAS  PubMed  Google Scholar 

  131. Ghosh, G. & Ghosh, S. Solvent dependent pathway complexity and seeded supramolecular polymerization. Chem. Commun. 54, 5720–5723 (2018).

    CAS  Google Scholar 

  132. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    CAS  PubMed  Google Scholar 

  133. Gädt, T., Ieong, N. S., Cambridge, G., Winnik, M. A. & Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 8, 144–150 (2009).

    PubMed  Google Scholar 

  134. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    CAS  PubMed  Google Scholar 

  135. Powers, E. T. & Powers, D. L. Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. Biophys. J. 94, 379–391 (2008).

    CAS  PubMed  Google Scholar 

  136. Aguzzi, A. & Calella, A. M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009).

    CAS  PubMed  Google Scholar 

  137. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    CAS  PubMed  Google Scholar 

  138. Robinson, M. E. et al. Length control of supramolecular polymeric nanofibers based on stacked planar platinum(II) complexes by seeded-growth. Chem. Commun. 51, 15921–15924 (2015).

    CAS  Google Scholar 

  139. Wan, Q., To, W.-P., Yang, C. & Che, C.-M. The metal–metal-to-ligand charge transfer excited state and supramolecular polymerization of luminescent pincer PdII–isocyanide complexes. Angew. Chem. Int. Ed. 57, 3089–3093 (2018).

    CAS  Google Scholar 

  140. Kang, J. et al. C 5-symmetric chiral corannulenes: desymmetrization of bowl inversion equilibrium via “intramolecular” hydrogen-bonding network. J. Am. Chem. Soc. 136, 10640–10644 (2014).

    CAS  PubMed  Google Scholar 

  141. Pal, D. S., Kar, H. & Ghosh, S. Controllable supramolecular polymerization via a chain-growth mechanism. Chem. Commun. 54, 928–931 (2018).

    CAS  Google Scholar 

  142. Ogi, S. et al. Seeded polymerization of an amide-functionalized diketopyrrolopyrrole dye in aqueous media. Chem. Eur. J. 25, 7303–7307 (2019).

    CAS  PubMed  Google Scholar 

  143. Robinson, M. E. et al. Dimensional control and morphological transformations of supramolecular polymeric nanofibers based on cofacially-stacked planar amphiphilic platinum(II) complexes. ACS Nano 11, 9162–9175 (2017).

    CAS  PubMed  Google Scholar 

  144. Frisch, H. et al. Kinetically controlled sequential growth of surface-grafted chiral supramolecular copolymers. Angew. Chem. Int. Ed. 55, 7242–7246 (2016).

    CAS  Google Scholar 

  145. Spitzer, D., Marichez, V., Formon, G. J. M., Besenius, P. & Hermans, T. M. Surface-assisted self-assembly of a hydrogel by proton diffusion. Angew. Chem. Int. Ed. 57, 11349–11353 (2018).

    CAS  Google Scholar 

  146. Mishra, A. et al. Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization. Nat. Commun. 9, 1295 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Jain, A., Dhiman, S., Dhayani, A., Vemula, P. K. & George, S. J. Chemical fuel-driven living and transient supramolecular polymerization. Nat. Commun. 10, 450 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Adelizzi, B., Van Zee, N. J., de Windt, L. N. J., Palmans, A. R. A. & Meijer, E. W. Future of supramolecular copolymers unveiled by reflecting on covalent copolymerization. J. Am. Chem. Soc. 141, 6110–6121 (2019).

    CAS  PubMed  Google Scholar 

  149. Schacher, F. H., Rupar, P. A. & Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 51, 7898–7921 (2012).

    CAS  Google Scholar 

  150. Ma, X. et al. Fabrication of chiral-selective nanotubular heterojunctions through living supramolecular polymerization. Angew. Chem. Int. Ed. 55, 9539–9543 (2016).

    CAS  Google Scholar 

  151. Zhang, K., Yeung, M. C.-L., Leung, S. Y.-L. & Yam, V. W.-W. Living supramolecular polymerization achieved by collaborative assembly of platinum(II) complexes and block copolymers. Proc. Natl Acad. Sci. USA 114, 11844–11849 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).

    CAS  PubMed  Google Scholar 

  153. Hudson, Z. M., Lunn, D. J., Winnik, M. A. & Manners, I. Colour-tunable fluorescent multiblock micelles. Nat. Commun. 5, 3372 (2014).

    PubMed  Google Scholar 

  154. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    CAS  PubMed  Google Scholar 

  155. He, X. et al. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat. Mater. 16, 481–488 (2017).

    CAS  PubMed  Google Scholar 

  156. Jin, X.-H. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018).

    CAS  PubMed  Google Scholar 

  157. Jarrett-Wilkins, C. et al. Living supramolecular polymerisation of perylene diimide amphiphiles by seeded growth under kinetic control. Chem. Eur. J. 24, 15556–15565 (2018).

    CAS  PubMed  Google Scholar 

  158. Adelizzi, B. et al. Supramolecular block copolymers under thermodynamic control. J. Am. Chem. Soc. 140, 7168–7175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pal, A. et al. Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew. Chem. Int. Ed. 54, 7852–7856 (2015).

    CAS  Google Scholar 

  160. Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nat. Commun. 6, 7009 (2015).

    PubMed  Google Scholar 

  161. Zhang, W., Jin, W., Fukushima, T., Mori, T. & Aida, T. Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric assembly. J. Am. Chem. Soc. 137, 13792–13795 (2015).

    CAS  PubMed  Google Scholar 

  162. Jung, S. H., Bochicchio, D., Pavan, G. M., Takeuchi, M. & Sugiyasu, K. A block supramolecular polymer and its kinetically enhanced stability. J. Am. Chem. Soc. 140, 10570–10577 (2018).

    CAS  PubMed  Google Scholar 

  163. Wagner, W., Wehner, M., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by seeded living polymerization of perylene bisimides. J. Am. Chem. Soc. 141, 12044–12054 (2019).

    CAS  PubMed  Google Scholar 

  164. Wagner, W., Wehner, M., Stepanenko, V. & Würthner, F. Impact of molecular shape on supramolecular copolymer synthesis in seeded living polymerization of perylene bisimides. CCS Chem. 1, 598–613 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors thank their current and previous co-workers for their contributions to this research field during the last two decades and the Deutsche Forschungsgemeinschaft for continuous financial support. Furthermore, the Bavarian State Ministry for Education, Culture, Science and Arts is acknowledged for the establishment of the KeyLab for Supramolecular Polymers of the Bavarian Polymer Institute at the Center for Nanosystems Chemistry in Würzburg. M.W. thanks the German Fonds der Chemischen Industrie for a PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.W. and F.W. wrote this Review.

Corresponding author

Correspondence to Frank Würthner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehner, M., Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem 4, 38–53 (2020). https://doi.org/10.1038/s41570-019-0153-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0153-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing