Skip to main content

Advertisement

Log in

Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electrocatalytic activity and sorption behavior of hydrogen in nanosized Pd–Si–(Cu) metallic glass thin film and Pd thin film electrodes sputtered on a Si/SiO2 substrate were investigated by linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrode MG4 (Pd69Si18Cu13) exhibits the best performance with the highest electrocatalytic activity in the hydrogen evolution region with less than half of the Tafel slope of Pd thin film of the same thickness and lowest overpotential at 10 mA cm−2. A new approach has been adopted by a nonlinear fitting of the entire region of the polarization curve (far- and near-equilibrium cathodic and anodic regions) to the Butler-Volmer model. α parameter is lowest for the MG2 electrode (Pd79Si16Cu5), marking that nonequilibrium conditions change the reaction kinetics. Together with MG2, MG4 shows the lowest Bode magnitude values for hydrogen sorption and evolution regions, indicating that the bonding and release of hydrogen atoms to the electrode is easier. MG4 electrode shows a dramatic decrease of the overpotential after 100 cycles, yielding an increase in hydrogen activity. Besides, MG4 exhibits the sharpest current density drop in the HER region in cyclic voltammetry compared with other MG and Pd electrodes, indicating higher electrocatalytic activity towards hydrogen evolution. The findings highlight the influence of the selected metallic glasses for the design and development of metal catalysts with higher sorption kinetics and/or electrocatalytic turnover.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Karchiyappan, Energy sources. Part A 41, 7 (2019)

    Google Scholar 

  2. W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157, 11 (2010)

    Google Scholar 

  3. R.J. Wei, M. Fang, G.F. Dong, J.C. Ho, Sci. Bull. 62, 14 (2017)

    Google Scholar 

  4. W.C. Sheng, M. Myint, J.G.G. Chen, Y.S. Yan, Energy Environ. Sci. 6, 5 (2013)

    Google Scholar 

  5. B.E. Conway, L. Bai, J. Electroanal. Chem. 198, 1 (1986)

    Google Scholar 

  6. R. Caputo, A. Alavi, Mol. Phys. 101, 11 (2003)

    Google Scholar 

  7. B.D. Adams, A.C. Chen, Mater. Today 14, 6 (2011)

    Google Scholar 

  8. M.W. Chen, NPG Asia Mater. 3 (2011)

  9. Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, W.H. Wang, Adv. Mater. 28, 46 (2016)

    Google Scholar 

  10. W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, H.X. Wang, J. Mater. Chem. A 5, 35 (2017)

    Google Scholar 

  11. G.Q. Yue, Y. Zhang, Y. Sun, B. Shen, F. Dong, Z.Y. Wang, R.J. Zhang, Y.X. Zheng, M.J. Kramer, S.Y. Wang, C.Z. Wang, K.M. Ho, L.Y. Chen, Sci. Rep. 5 (2015)

  12. G. Wilde, I.R. Lu, R. Willnecker, Mater. Sci. Eng. A 375 (2004)

  13. G. Fiore, L. Battezzati, J. Alloys Compd. 483, 1–2 (2009)

    Google Scholar 

  14. A. Takeuchi, A. Inoue, Mater. Trans. 46, 12 (2005)

    Google Scholar 

  15. C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, 11, A1943-A1949 (2004) https://doi.org/10.1149/1.1797037

    CAS  Google Scholar 

  16. H. Cesiulis, N. Tsyntsaru, A. Ramanavicius, G. Ragoisha, in: Nanostructures and Thin Films for Multifunctional Applications: Technology, Properties and Devices, ed. By I. Tiginyanu, P. Topala, V. Ursakis, (Springer International Publishing, Cham, 2016), p. 3–42

  17. A. Lasia, in: Modern Aspects of Electrochemistry, ed. By B.E. Conway, J.O.M. Bockris, R.E. Whites, (Springer US, 1999), p. 143–248

  18. B. Sarac, T. Karazehir, M. Mühlbacher, B. Kaynak, C. Gammer, T. Schöberl, A.S. Sarac, J. Eckert, ACS Appl. Energy Mater. 1, 6 (2018)

    Google Scholar 

  19. J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, Second edn. (Wiley, Ltd Publication, West Sussex, UK, 2011), p. 421

    Google Scholar 

  20. R.K. Singh, R. Ramesh, R. Devivaraprasad, A. Chakraborty, M. Neergat, Electrochim. Acta 194 (2016)

  21. M. Łukaszewski, K. Hubkowska, U. Koss, A. Czerwiński, J. Solid State Electrochem. 16, 7 (2012)

    Google Scholar 

  22. W.C. Sheng, Z.B. Zhuang, M.R. Gao, J. Zheng, J.G.G. Chen, Y.S. Yan, Nat. Commun. 6 (2015)

  23. J. Zheng, S.Y. Zhou, S. Gu, B.J. Xu, Y.S. Yan, J. Electrochem. Soc. 163, 6 (2016)

    Google Scholar 

  24. S. Henning, J. Herranz, H.A. Gasteiger, J. Electrochem. Soc. 162, 1 (2015)

    Google Scholar 

  25. H.A. Gasteiger, N.M. Markovic, P.N. Ross, J. Phys. Chem. 99, 45 (1995)

    Google Scholar 

  26. J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H.A. Gasteiger, Energy Environ. Sci. 7, 7 (2014)

    Google Scholar 

  27. S.M. Alia, Y.S. Yan, J. Electrochem. Soc. 162, 8 (2015)

    Google Scholar 

  28. D.I. Vaireanu, A. Cojocaru, I. Maior, S. Caprarescu, A. Ionescu, V. Radu, Key Eng. Mater. 415 (2009)

  29. S.N. Victoria, S. Ramanathan, Electrochim. Acta 56, 5 (2011)

    Google Scholar 

  30. R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Pure Appl. Chem. 86, 2 (2014)

    Google Scholar 

  31. R. O’Hayre, S.W. Cha, W.G. Colella, F.B. Prinz, in: Fuel Cell Fundametals, ed. By, (Wiley, Hoboken, 2016), p. 89

  32. A.J. Bard, L.R. Faulkner, in: Electrochemical Methods: Fundamentals and Applications ed. By, (Wiley, New York, 2001), p. 98–102

  33. B.E. Conway, J. Chem. Educ. 39, 8 (1962)

    Google Scholar 

  34. R. Parsons, Trans. Faraday Soc. 54, 7 (1958)

    Google Scholar 

  35. R. Parsons, in: Manual of Symbols and Terminology for Physicochemical Quantities and Units, ed. By, (International Union of Pure and Applied Chemistry—Division of Physical Chemistry, 1973), p. 500–516

  36. A.P. Brown, M. Krumpelt, R.O. Loutfy, N.P. Yao, Electrochim. Acta 27, 5 (1982)

    Google Scholar 

  37. M.A. Raj, S. Arumainathan, Vacuum 160, (2019)

    Google Scholar 

  38. X.T. Wang, M. Zeng, N. Nollmann, G. Wilde, Z. Tian, C.Y. Tang, AIP Adv. 7, 9 (2017)

    Google Scholar 

  39. H. Okamoto, J. Phase Equilib. Diffus. 28, 2 (2007)

    Google Scholar 

  40. S. Kajita, S. Yamaura, H. Kimura, A. Inoue, Mater. Trans. 51, 12 (2010)

    Google Scholar 

  41. S. Kajita, S. Kohara, Y. Onodera, T. Fukunaga, E. Matsubara, Mater. Trans. 52, 9 (2011)

    Google Scholar 

  42. J.L. Tang, Q.H. Zhu, Y.Y. Wang, M. Apreutesei, H. Wang, P. Steyer, M. Chamas, A. Billard, Coatings 7, 12 (2017)

    Google Scholar 

  43. L.F.P. Dick, M.B. Lisboa, E.B. Castro, J. Appl. Electrochem. 32, 8 (2002)

    Google Scholar 

  44. H. Duncan, A. Lasia, Electrochim. Acta 52, 21 (2007)

    Google Scholar 

  45. Y.M. Wang, D.D. Zhao, Y.Q. Zhao, C.L. Xu, H.L. Li, RSC Adv. 2, 3 (2012)

    Google Scholar 

  46. J. Liang, Y.C. Yang, J. Zhang, J.J. Wu, P. Dong, J.T. Yuan, G.M. Zhang, J. Lou, Nanoscale 7, 36 (2015)

    Google Scholar 

  47. T.G. Kelly, S.T. Hunt, D.V. Esposito, J.G. Chen, Int. J. Hydrogen Energy 38, 14 (2013)

  48. K. Yin, Y.F. Cheng, B.B. Jiang, F. Liao, M.W. Shao, J. Colloid Interface Sci. 522 (2018)

  49. T. Masuda, Y. Sun, H. Fukumitsu, H. Uehara, S. Takakusagi, W.J. Chun, T. Kondo, K. Asakura, K. Uosaki, J. Phys. Chem. C 120, 29 (2016)

    Google Scholar 

  50. S. Burkhardt, M.T. Elm, B. Lani-Wayda, P.J. Klar, Adv. Mater. Interfaces 5, 6 (2018)

    Google Scholar 

  51. D. Landolt, in, ed. By, (CRC Press Taylor & Francis Group, Polytechniques et universitaires romandes EPFL, 2007), p. 202–203

  52. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 19 (2011)

    Google Scholar 

  53. L. Liao, J. Zhu, X.J. Bian, L.N. Zhu, M.D. Scanlon, H.H. Girault, B.H. Liu, Adv. Funct. Mater. 23, 42 (2013)

    Google Scholar 

  54. J. Durst, C. Simon, F. Hasche, H.A. Gasteiger, J. Electrochem. Soc. 162, 1 (2015)

    Google Scholar 

  55. J.T. Tian, W. Wu, Z.H. Tang, Y. Wu, R. Burns, B. Tichnell, Z. Liu, S.W. Chen, Catalysts 8, 8 (2018)

    Google Scholar 

  56. Z.P. Lu, Y. Li, S.C. Ng, J. Non-Cryst, Solids 270, 1–3 (2000)

    Google Scholar 

  57. H.S. Chen, D. Turnbull, Acta Metall. 17, 8 (1969)

    Google Scholar 

  58. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 5 (2015)

  59. S. Cobo, J. Heidkamp, P.A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11, 9 (2012)

    Google Scholar 

  60. A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, Science 326, 5958 (2009)

    Google Scholar 

  61. D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B. Alves, T. Fujita, M.W. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12, 9 (2013)

    Google Scholar 

  62. M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, Nat. Commun. 6 (2015)

  63. H.W. Liang, S. Bruller, R.H. Dong, J. Zhang, X.L. Feng, K. Mullen, Nat. Commun. 6 (2015)

  64. J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 102, 8 (1955)

    Google Scholar 

  65. J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 103, 4 (1956)

    Google Scholar 

  66. J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 104, 9 (1957)

    Google Scholar 

  67. K. Ota, T. Karikomi, H. Yoshitake, N. Kamiya, Denki Kagaku 62, 2 (1994)

  68. K. Qi, S.S. Yu, Q.Y. Wang, W. Zhang, J.C. Fan, W.T. Zheng, X.Q. Cui, J. Mater. Chem. A 4, 11 (2016)

    Google Scholar 

  69. M.D. Macia, J.M. Campina, E. Herrero, J.M. Feliu, J. Electroanal, Chem. 564, 1–2 (2004)

    Google Scholar 

  70. T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, Electrochim. Acta 48, 25–26 (2003)

    Google Scholar 

  71. D. Wang, X. Wang, Y. Lu, C.S. Song, J. Pan, C.L. Li, M.L. Sui, W. Zhao, F.Q. Huang, J. Mater. Chem. A 5, 43 (2017)

    Google Scholar 

  72. N. Pentland, J.O. Bockris, E. Sheldon, J. Electrochem. Soc. 103, 9 (1956)

    Google Scholar 

  73. J.N. Han, J.W. Lee, M. Seo, S.I. Pyun, J. Electroanal. Chem. 506, 1 (2001)

    CAS  Google Scholar 

  74. B. Łosiewicz, A. Lasia, J. Electroanal. Chem. 822 (2018)

  75. J.L. Tang, X.H. Zhao, Y. Zuo, P.F. Ju, Y.M. Tang, Electrochim. Acta 174 (2015)

  76. A. Safavi, S.H. Kazemi, H. Kazemi, Fuel 118, (2014)

    Google Scholar 

  77. J.A.S.B. Cardoso, L. Amaral, O. Metin, D.S.P. Cardoso, M. Sevim, T. Sener, C.A.C. Sequeira, D.M.F. Santos, Int. J. Hydrogen Energy 42, 7 (2017)

  78. S. Strbac, M. Smiljanic, Z. Rakocevic, J. Electroanal. Chem. 755 (2015)

  79. H.B. Liao, C. Wei, J.X. Wang, A. Fisher, T. Sritharan, Z.X. Feng, Z.C.J. Xu, Adv. Energy Mater. 7, 21 (2017)

    Google Scholar 

  80. K. Magdić, K. Kvastek, V. Horvat-Radošević, Electrochim. Acta 167 (2015)

Download references

Acknowledgments

The authors would like to thank C. Mitterer for providing the sputtering device for synthesizing the TFMGs, B. Kaynak for determining the compositions of MGTFs using X-ray photoelectron spectroscopy, and T. Schöberl for the technical support of acquiring AFM images.

Funding

This work was supported by the European Research Council under the Advanced Grant “INTELHYB-Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures” (Grant No. ERC-2013-ADG-340025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baran Sarac.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.84 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarac, B., Karazehir, T., Mühlbacher, M. et al. Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses. Electrocatalysis 11, 94–109 (2020). https://doi.org/10.1007/s12678-019-00572-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00572-z

Keywords

Navigation