Skip to main content
Log in

Dislocation Damping and Defect Friction Damping in Magnesium: Molecular Dynamics Study

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the molecular dynamics method was used to study the damping mechanism in Mg alloys at the atomic scale. The energy dissipated by the nucleation and motion of dislocations and by defects friction, and the effect of defects, such as vacancies, cracks, and grain boundaries, on them were studied. The study shows that different kinds of defect have different effects on the dislocation damping and defect friction damping. And then, the effect of strain amplitude and temperature on damping capacity of Mg was studied. The result shows that the amplitude independent damping is caused by defect friction and the amplitude dependent damping is mainly caused by the nucleation and motion of dislocation; the damping of Mg increased exponentially with the temperature, and the damping peck appeared at 440 K is attributed to the appearance of dislocations at the grain boundaries which may be caused by boundaries self-diffusion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Li, S. Dai, D. Liu, Y. Li, Status of Res earch on Material Damping and Damping Alloys. J Mater. Eng. 4, 44–48 (1999). (in Chinese)

    Google Scholar 

  2. Z. Wang, Q. Li, Z. She, F. Chen, L. Li, J. Mater. Chem. 22, 4097–4105 (2012)

    CAS  Google Scholar 

  3. W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14, 1229 (2015)

    CAS  Google Scholar 

  4. Y. Il Choi, S. Salman, K. Kuroda, M. Okido, Electrochim. Acta 97, 313–319 (2013)

    Google Scholar 

  5. A.S. Hamdy, D.P. Butt, Electrochim. Acta. 108, 852–859 (2013)

    CAS  Google Scholar 

  6. V.V. Ramalingam, P. Ramasamy, M. Das Kovukkal, G. Myilsamy, Metals Mater. Int. (2019)

  7. X. Zhang, R. Wu, Key Eng. Mater. 249, 217–222 (2003)

    CAS  Google Scholar 

  8. A. v Granato, K. Lücke, J. Appl. Phys. 27, 583–593 (1956)

    Google Scholar 

  9. J.H. Jun, J. Alloys 610, 169–172 (2014)

    CAS  Google Scholar 

  10. Z. Zhang, X. Zeng, W. Ding, Mater. Sci. Eng. A. 392, 150–155 (2005)

    Google Scholar 

  11. R. Niu, F. Yan, D. Duan, X. Yang, J. Alloys Compd. 785, 1270–1278 (2019)

    CAS  Google Scholar 

  12. H. Somekawa, H. Watanabe, D.A. Basha, A. Singh, T. Inoue, Scr. Mater. 129, 35–38 (2017)

    CAS  Google Scholar 

  13. Y. Cui, Y. Li, S. Sun, H. Bian, H. Hua, Z. Wang, Y. Koizumi, A. Chiba, Scr. Mater. 101, 8–11 (2015)

    CAS  Google Scholar 

  14. E.O. Hall, Proc. Phys. Soc. B 64, 742 (1951)

    Google Scholar 

  15. N.J. Petch, J. Iron Steel Inst. 174(19), 25–28 (1953)

    CAS  Google Scholar 

  16. H. Puga, V.H. Carneiro, J. Barbosa, D. Soares, Metals Mater. Int. 22, 863–871 (2016)

    Google Scholar 

  17. D. Wan, H. Wang, S. Ye, Y. Hu, L. Li, J. Alloys Compd. 782, 421–426 (2019)

    CAS  Google Scholar 

  18. J.-H. Jun, J.-H. Moon, Metals Mater. Int. 21, 780–783 (2015)

    CAS  Google Scholar 

  19. S. Tekumalla, C. Yang, S. Seetharaman, W.L.E. Wong, C.S. Goh, R. Shabadi, M. Gupta, J. Alloys Compd. 689, 350–358 (2016)

    CAS  Google Scholar 

  20. K. Sugimoto, K. Niiya, T. Okamoto, K. Kishitake, Trans. Jpn. Inst. Metals 18, 581–584 (1977)

    Google Scholar 

  21. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    CAS  Google Scholar 

  22. J. Fan, Multiscale Analysis for Deformation and Failure of Materials (Wiley, New York, 2011), pp. 301–302

  23. A.F. Voter, Phys Rev. B 34, 6819 (1986)

    CAS  Google Scholar 

  24. A.F. Voter, Phys. Rev. Lett. 78, 3908 (1997)

    CAS  Google Scholar 

  25. L.C. Kröger, W.A. Kopp, M. Döntgen, K. Leonhard, J. Chem. Theory Comput. 13, 3955–3960 (2017)

    Google Scholar 

  26. M.W. Finnis, J.E. Sinclair, Philos. Mag. A. 50, 45–55 (1984)

    CAS  Google Scholar 

  27. M.I. Mendelev, M. Asta, M.J. Rahman, J.J. Hoyt, Philos. Mag. 89, 3269–3285 (2009)

    CAS  Google Scholar 

  28. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    CAS  Google Scholar 

  29. S. Nosé, J. Chem. Phys. 81, 511–519 (1984)

    Google Scholar 

  30. W.G. Hoover, Phys. Rev. A. 31, 1695 (1985)

    CAS  Google Scholar 

  31. A.P. Thompson, S.J. Plimpton, M. William, J. Chem. Phys. 131, 138 (2009)

    Google Scholar 

  32. M. Gupta, N. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites (Wiley, Hoboken, 2011), p. 8

    Google Scholar 

  33. J. Bočan, J. Maňák, A. Jäger, Mater. Sci. Eng. A 644, 121–128 (2015)

    Google Scholar 

  34. P. Hautojärvi, J. Johansson, A. Vehanen, J. Yli-Kauppila, J. Hillairet, P. Tzanétakis, Appl. Phys. A. 27, 49–56 (1982)

    Google Scholar 

  35. W. Zhu, W.L. Song, J.J. Wang, Adv. Mater. Res. 680, 8–14 (2013)

    CAS  Google Scholar 

  36. J. Göken, D. Letzig, K.U. Kainer, J. Alloys Compd. 378, 220–225 (2004)

    Google Scholar 

  37. C. Blackwell, A. Palazotto, T.J. George, C.J. Cross, Shock Vib. 14, 37–51 (2007)

    Google Scholar 

  38. F. Ivancic, A. Palazotto, C. Cross, in: 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, (2003), p. 1689

  39. M. Koller, P. Sedlák, H. Seiner, M. Ševčík, M. Landa, J. Stráská, M. Janeček, J. Mater. Sci. 50, 808–818 (2015)

    CAS  Google Scholar 

  40. R. Ranganathan, R. Ozisik, P. Keblinski, Compos. Part B Eng. 93, 273–279 (2016)

    CAS  Google Scholar 

  41. W. Diqing, R.A.R.E. Met, Mater. Eng. 42, 585–588 (2013)

    Google Scholar 

  42. A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 85007 (2012)

    Google Scholar 

  43. W.B. Jiang, Q.P. Kong, L.B. Magalas, Q.F. Fang, Arch. Metall. Mater. 60, 371–375 (2015)

    CAS  Google Scholar 

  44. X. Hu, X. Wang, X. He, W.U. Kun, M. Zheng, Trans. Nonferrous Metal. Soc. China 22, 1907–1911 (2012)

    CAS  Google Scholar 

  45. G.D. Fan, M.Y. Zheng, X.S. Hu, C. Xu, K. Wu, I.S. Golovin, J. Alloys Compd. 549, 38–45 (2013)

    CAS  Google Scholar 

  46. G.D. Fan, M.Y. Zheng, X.S. Hu, C. Xu, K. Wu, I.S. Golovin, Mater. Sci. Eng. A. 556, 588–594 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51505060 and 11472068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Song, X., Xu, A. et al. Dislocation Damping and Defect Friction Damping in Magnesium: Molecular Dynamics Study. Met. Mater. Int. 27, 1458–1468 (2021). https://doi.org/10.1007/s12540-019-00566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00566-y

Keywords

Navigation