Skip to main content
Log in

The Effect of SnO2 and ZnO on the Performance of Perovskite Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The efficiency of perovskite solar cells is studied through the Analysis of Microelectronic and Photonic Structures (AMPS) and the Solar Cell Capacitance Simulator (SCAPS) simulation software programs. The programs serve to determine how the thickness of HTM, ETM and perovskite absorber layers affects the performance of solar cells. An investigation is also conducted on how temperature, electron density concentration and perovskite defect density affect the fill factor (FF), performance (PCE), short-circuit current density (JSC), and open-circuit voltage (VOC). Then, JV characteristics are calculated using ZnO and SnO2 as two types of ETM. As a result, optimal values are achieved for the thickness of HTM, ETM and absorber layers. It is also indicated that an increase in the defect density of perovskites can reduce the performance of solar cells. Another important finding of the study is that ZnO can possibly replace the expensive SnO2 for better ETM conversion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Song, H. Xiong, W. Jiang, H. Zhang, X. Xue, C. Ma, Y. Ma, L. Sun, H. Wang, and L. Duan, Nano Lett. 16, 6245 (2016).

    Article  CAS  Google Scholar 

  2. K.B. Sopian and M. Akhtaruzzaman, J. Electron. Mater. 47, 3051 (2018).

    Article  Google Scholar 

  3. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S. Seok, Nat. Mater. 13, 897 (2014).

    Article  CAS  Google Scholar 

  4. W.J. Yin, J.H. Yang, J. Kang, Y. Yan, and S.H. Wei, J. Mater. Chem A 3, 8926 (2015).

    Article  CAS  Google Scholar 

  5. M.I. Hossain and B. Aïssa, J. Electron. Mater. 45, 5746 (2016).

    Article  Google Scholar 

  6. W.A. Laban and L. Etgar, Energy Environ. Sci. 6, 3249 (2013).

    Article  CAS  Google Scholar 

  7. S. Andalibi, A. Rostami, G. Darvish, and M.K. Moravvej, J. Electron. Mater. 46, 1806 (2017).

    Article  Google Scholar 

  8. F. Doosthosseini, A. Behjat, S. Hashemizadeh, and N. Torabi, J. Nanophotonics 9, 093092 (2015).

    Article  Google Scholar 

  9. X. Shang, Z. Wang, M. Li, L. Zhang, J. Fang, J. Tai, and Y. He, Thin Solid Films 550, 649 (2014).

    Article  CAS  Google Scholar 

  10. W. Yang, F. Wan, S. Chen, and C. Jiang, Nanoscale Res. Lett. 4, 1486 (2009).

    Article  CAS  Google Scholar 

  11. S. Lany and A. Zunger, J. Appl. Phys. 100, 113725 (2006).

    Article  Google Scholar 

  12. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).

    Article  CAS  Google Scholar 

  13. K. Decock, P. Zabierowski, and M. Burgelman, J. Appl. Phys. 111, 043703 (2012).

    Article  Google Scholar 

  14. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt. Res. Appl. 22, 1 (2014).

    Article  Google Scholar 

  15. H. Zhang, X. Qiao, Y. Shen, and M. Wang, J. Energy Chem. 729, 24 (2015).

    Google Scholar 

  16. N.H. Como and A.M. Acevedo, Sol. Energy Mater. Sol. Cells 94, 62 (2010).

    Article  Google Scholar 

  17. T. Meyer, F. Engelhardt, J. Parisi, and U. Rau, J. Appl. Phys. 91, 5093 (2002).

    Article  CAS  Google Scholar 

  18. Y.M. Song, J.Q. Dai, and H. Zhang, Curr. Appl. Phys. 16, 1 (2016).

    Article  Google Scholar 

  19. S.D. Wolf, J. Holobsky, S.J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.J. Haug, and C. Ballif, J. Phys. Chem. Lett. 5, 3035 (2014).

    Article  Google Scholar 

  20. J.T. Heath, J.D. Cohen, and W.N. Shafarman, J. Appl. Phys. 95, 1000 (2004).

    Article  CAS  Google Scholar 

  21. S.M. Kim, Opt. Eng. 52, 106101 (2013).

    Article  Google Scholar 

  22. Q. Zhou, D. Jiao, K. Fu, X. Wu, Y. Chen, J. Lu, and S. Yang, Sol. Energy 123, 51 (2016).

    Article  CAS  Google Scholar 

  23. T. Minemoto and M. Murata, Sol. Energy Mater. Sol. Cells 133, 8 (2015).

    Article  CAS  Google Scholar 

  24. E. Karimi and S.M.B. Ghorashi, J. Nanophotonics 11, 032510 (2017).

    Article  Google Scholar 

  25. Y. Bai, H. Yu, Z. Li, and G.Q. Lu, Adv. Mater. 24, 5850 (2012).

    Article  CAS  Google Scholar 

  26. M.I. Hossain, F.H. Alharbi, and N. Tabet, Sol. Energy 120, 370 (2015).

    Article  CAS  Google Scholar 

  27. M. Mostefaouia, H. Mazaria, S. Khelifia, A. Bouraioua, and R. Daboua, Energy Procedia 74, 736 (2015).

    Article  Google Scholar 

  28. B. Tan and Y. Wu, J. Phys. Chem. B 110, 15932 (2006).

    Article  CAS  Google Scholar 

  29. E. Karimi and S.M.B. Ghorashi, Optik 130, 650 (2017).

    Article  CAS  Google Scholar 

  30. T. Dullweber, O. Lundberg, J. Malmstrom, M. Bodegard, L. Stolt, U. Rau, H.W. Schock, and J.H. Werner, Thin Solid Films 387, 11 (2001).

    Article  CAS  Google Scholar 

  31. N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Gratzel, and S. SeokJ, Am. Chem. Soc. 136, 7837 (2014).

    Article  CAS  Google Scholar 

  32. N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, and S. Seok, J. Am. Chem. Soc. 135, 19087 (2013).

    Article  CAS  Google Scholar 

  33. Y. Liang, B. Peng, and J. Chen, J. Phys. Chem. C 114, 10992 (2010).

    Article  CAS  Google Scholar 

  34. T. Minemoto, T. Matsui, and H. Takakura, Sol. Energy Mater. Sol. Cells 67, 83 (2001).

    Article  CAS  Google Scholar 

  35. H.J. Snaith and M. Grätzel, Adv. Mater. 19, 3643 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Yiming Liu, Dr. Yun Sun, Dr. Angus Rockett, Dr. Alex Niemegeers, Dr. Marc Burgelman, Dr. Koen Decock, Dr. Stefaan Degrave, Dr. Johan Verschraegen and the Universities of Pennsylvania and Gent for providing AMPS and SCAPS programs simulations. The research council of the University of Kashan is also gratefully acknowledged for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohamad Bagher Ghorashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, E., Ghorashi, S.M.B. The Effect of SnO2 and ZnO on the Performance of Perovskite Solar Cells. J. Electron. Mater. 49, 364–376 (2020). https://doi.org/10.1007/s11664-019-07804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07804-4

Keywords

Navigation