Skip to main content
Log in

Magnetic and Structural Properties of Exchange Coupled Heusler Alloy NiO/Co2FeAl Interfaces with n-and p-Type Silicon Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Exchange coupled structures of half metallic ferromagnets, Heusler Alloy (FM), Co2FeAl (CFA) and antiferromagnet (AF), NiO were fabricated by electron beam evaporation technique on n- and p-type Si substrates. These fabricated bilayer structures were further characterized for structural, morphological and magnetic point of views using x-ray diffraction (XRD), atomic/magnetic force microscopy (AFM/MFM) and vibrating sample magnetometer (VSM) techniques. Structural study shows the presence of CFA alloy and NiO phase. Surface morphology shows the granular feature of the top surface with grain size of 200–300 nm due to clustering of smaller grains. Smaller sized magnetic domains have been observed for the structures. Hysteresis behaviour of NiO/CFA/Si structures shows the ferromagnetic behaviour for in-plane orientation with negligible exchange bias whereas a significant exchange bias for out of plane orientation has been observed. The observed result could be understood due to surface roughness and arrangements of spins near the interface of ferromagnetic and anti-ferromagnetic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Nogués and I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).

    Article  Google Scholar 

  2. W.H. Meiklejohn and C.P. Bean, Phys. Rev. 102, 1413 (1956).

    Article  Google Scholar 

  3. J. Dubowik, I. Gościańska, K. Załȩski, H. Głowiński, Y. Kudryavtsev, and A. Ehresmann, J. Appl. Phys. 113, 193907 (2013).

    Article  CAS  Google Scholar 

  4. X.P. Zhao, J. Lu, S.W. Mao, Z.F. Yu, D.H. Wei, and J.H. Zhao, Appl. Phys. Lett. 112, 042403 (2018).

    Article  CAS  Google Scholar 

  5. N.C. Koon, Phys. Rev. Lett. 78, 4865 (1997).

    Article  CAS  Google Scholar 

  6. M.D. Stiles and R.D. McMichael, Phys. Rev. B 59, 3722 (1999).

    Article  CAS  Google Scholar 

  7. P. Miltenyi, M. Gierlings, J. Keller, B. Beschoten, G. Guntherodt, U. Nowak, and K.D. Usadel, Phys. Rev. Lett. 84, 4224 (2000).

    Article  CAS  Google Scholar 

  8. U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten, and G. Guntherodt, Phys. Rev. B 66, 014430 (2002).

    Article  CAS  Google Scholar 

  9. J. Camarero, J. Sort, A. Hoffmann, J.M. GarcıaMartın, B. Dieny, R. Miranda, and J. Nogue, Phys. Rev. Lett. 95, 057204 (2005).

    Article  CAS  Google Scholar 

  10. J. Saha and R.H. Victora, Phys. Rev. B 73, 104433 (2006).

    Article  CAS  Google Scholar 

  11. P.J. Webster, J. Phys. Chem. 32, 1221 (1971).

    CAS  Google Scholar 

  12. J. Kübler, A.R. Williams, and C.B. Sommers, Phys. Rev. B 28, 1745 (1983).

    Article  Google Scholar 

  13. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004).

    Article  CAS  Google Scholar 

  14. T. Ishikawa, H.-X. Liu, T. Taira, K.I. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 95, 232512 (2009).

    Article  CAS  Google Scholar 

  15. J. Dubowik, I. Gościańska, K. Załęski, H. Głowiński, A. Ehresmann, G. Kakazei, and S.A. Bunyaev, Acta Phys. Pol. A 121, 1121 (2012).

    Article  CAS  Google Scholar 

  16. Y. Sakuraba, M. Hattori, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, and T. Miyazaki, J. Phys. D Appl. Phys. 40, 1221 (2007).

    Article  CAS  Google Scholar 

  17. C. Chappert, A. Fert, and F.N.V. Dau, Nat. Mat. 6, 813 (2007).

    Article  CAS  Google Scholar 

  18. C. Felser, G.H. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).

    Article  CAS  Google Scholar 

  19. K. Kobayashi, R.Y. Umetsu, R. Kainuma, K. Ishida, T. Oyamada, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 85, 4684 (2004).

    Article  CAS  Google Scholar 

  20. I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  CAS  Google Scholar 

  21. Y. Ohdaira, M. Oogane, H. Naganuma, and Y. Ando, Appl. Phys. Lett. 99, 132513 (2011).

    Article  CAS  Google Scholar 

  22. W. Wang, H. Sukegawa, and K. Inomata, Phys. Rev. B 82, 092402 (2010).

    Article  CAS  Google Scholar 

  23. N.P. Alley, S. Takayama, A. Hirohata, and K. O’Grady, IEEE Trans. Magn. 47, 3490 (2011).

    Article  CAS  Google Scholar 

  24. H. Endo, A. Hirohata, T. Nakayama, and K. O’Grady, J. Phys. D Appl. Phys. 44, 145003 (2011).

    Article  CAS  Google Scholar 

  25. H. Endo, A. Hirohata, J. Sagar, L.R. Fleet, T. Nakayama, and K. O’Grady, J. Phys. D Appl. Phys. 44, 345003 (2011).

    Article  CAS  Google Scholar 

  26. K.K. Meng, S.H. Nie, X.Z. Yu, S.L. Wang, W.S. Yan, and J.H. Zhao, J. Appl. Phys. 110, 093904 (2011).

    Article  CAS  Google Scholar 

  27. A. Kumar and P.C. Srivastava, J. Elec. Mater. 43, 381 (2014).

    Article  CAS  Google Scholar 

  28. A. Kumar, T. Shripathi, and P.C. Srivastava, J. Sci.: Adv. Mater. Dev. 1, 290–294 (2016).

    Article  Google Scholar 

  29. Y. Takamura, R. Nakane, and S. Sugahara, J. Appl. Phys. 107, 09B111 (2010).

    Article  Google Scholar 

  30. J. P. Eberhart, Analyse Structurale et Chimiques Des Materiaux (Paris; Ed. Dunod) 46, 407 (1989).

  31. A. Kumar and P.C. Srivastava, J. Exp. Nanosci. 10, 803 (2015).

    Article  CAS  Google Scholar 

  32. A. Thiaville, J. Miltat, and J.M. García-Martín, Magnetic force microscopy: images of nanostructures and contrast modelling.Magnetic Microscopy of Nanostructures, ed. H. Hopster and H.P. Oepen (Berlin: Springer, 2005),

    Google Scholar 

  33. N. Srivastava and P.C. Srivastava, J. Appl. Phys. 111, 123909 (2012).

    Article  CAS  Google Scholar 

  34. V.I. Nikitenko, V.S. Gornakov, L.M. Dedukh, YuP Kabanov, A.F. Khapikov, A.J. Shapiro, R.D. Shull, A. Chaihen, and R.P. Michel, Phys. Rev. B 57, R8111 (1998).

    Article  CAS  Google Scholar 

  35. Jose R. Fermin, Revista Mexicana de Fısica 63, 145 (2017).

    Google Scholar 

  36. A. Roy, J.A. De Toro, V.S. Amaral, P. Muniz, J.M. Riveiro, and J.M.F. Ferreira, J. Appl. Phys. 115, 073904 (2014).

    Article  CAS  Google Scholar 

  37. S. Maat, K. Takano, S.S.P. Parkin, and E.E. Fulletron, Phys. Rev. Lett. 87, 087202-1 (2001).

    Article  CAS  Google Scholar 

  38. Z.X. Cheng, H.Y. Zhao, Y. Du, H. Kimura, K. Ozawa, and X.L. Wang, Scripta Mater. 65, 249 (2011).

    Article  CAS  Google Scholar 

  39. B. Skubic, J. Hellsvik, L. Nordstrom, and O. Eriksson, Acta Phys. Pol. A 115, 25 (2009).

    Article  CAS  Google Scholar 

  40. T. Schulthess and W. Butler, Phys. Rev. Lett. 81, 4516 (1998).

    Article  CAS  Google Scholar 

  41. P. Biagioni, A. Brambilla, M. Portalupi, N. Roug-maille, A.K. Schmid, A. Lanzara, P. Vavassori, M. Zani, M. Finazzi, and L. Duo, et al., J. Magn. Magn. Mater. 290, 153 (2005).

    Article  CAS  Google Scholar 

  42. A. Brambilla, M. Portalupi, M. Finazzi, G. Ghiringhelli, L. Duo, F. Parmigiani, M. Zacchigna, M. Zangrando, and F. Ciccacci, J. Magn. Magn. Mater. 272, 1221 (2004).

    Article  CAS  Google Scholar 

  43. R. Sahoo, D. M. Raj Kumar, D. Arvindha Babu, K. G. Suresh, and M. Manivel Raja, J. Appl. Phys. 113, 17A940 (2013).

  44. L. Liya, G. Yicheng, Y. Aru, Y. Jianhong, S. Yinli, and D. Hui, IEEE Trans. Magn. 51 (2015)

  45. Z. Qian, J.M. Sivertsen, and J.H. Judy, J. Appl. Phys. 83, 6825 (1998).

    Article  CAS  Google Scholar 

  46. D.V. Dimitrov, S. Zhang, J.Q. Xiao, G.C. Hadjipanayis, and C. Prados, Phys. Rev. B 58, 12090 (1998).

    Article  CAS  Google Scholar 

  47. D.-H. Han, J.-G. Zhu, J.H. Judy, and J.M. Sivertsen, J Appl Phys 81, 4519 (1998).

    Article  Google Scholar 

  48. J. Nogues, C. Leighton, and I.K. Schuller, Phys. Rev. B 61, 1315 (2000).

    Article  CAS  Google Scholar 

  49. H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, and J. Stohr, Phys. Rev. Lett. 91, 017203 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Srivastava, N. & Srivastava, P.C. Magnetic and Structural Properties of Exchange Coupled Heusler Alloy NiO/Co2FeAl Interfaces with n-and p-Type Silicon Substrates. J. Electron. Mater. 49, 712–719 (2020). https://doi.org/10.1007/s11664-019-07696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07696-4

Keywords

Navigation