Skip to main content
Log in

Enhanced Charge Transport and Corrosion Protection Properties of Polyaniline–Carbon Nanotube Composite Coatings on Mild Steel

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the synthesis and characterization of carbon nanotube (CNT)-doped polyaniline (PANI) composites for enhanced corrosion protection of steel with improved electrical properties. PANI–CNT nanocomposites were prepared through in situ polymerization of aniline in the presence of CNTs. Synthesized nanocomposites were characterized by several analytical methods such as Fourier transform infrared spectroscopy, x-ray diffraction, micro-Raman spectroscopy, and scanning electron microscopy in order to understand the structural, morphological, and molecular aspects of the composites. The doping of CNTs in PANI matrix drastically enhanced the alternating current/direct current (AC/DC) conductivities as well as the dielectric attributes and impedance spectroscopy of the composites. The anticorrosion studies of the prepared composites were performed by using open-circuit potential analysis and potentiodynamic measurements. Compared to stainless steel, PANI–CNT nanocomposites demonstrated excellent anticorrosion behavior. The obtained results showed that 25 wt.% of CNT-doped PANI composite exhibits excellent anticorrosion properties due to electron transmission and passive catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Curran and M.P. Ajayan, Adv. Mater. 10, 1091 (1998).

    CAS  Google Scholar 

  2. M. Cochet and W.K. Master, Chem. Commun. 10, 1450 (2001).

    Google Scholar 

  3. H. Zengin and W. Zhou, J. Adv. Mater. 14, 1480 (2002).

    CAS  Google Scholar 

  4. P.M. Ajayan and O. Stephen, J. Sci. 265, 1212 (1994).

    CAS  Google Scholar 

  5. P.M. Ajayan, Chem. Rev. 99, 1787 (1999).

    CAS  Google Scholar 

  6. H.R. Baughaman and A.A. Zakhidov, J. Sci. 297, 787 (2002).

    Google Scholar 

  7. T.E. Thostenson and Z. Ren, Sci. Technol. 61, 1899 (2001).

    CAS  Google Scholar 

  8. M. Moniruzzaman and K.I. Winey, Macromolecules 39, 5194 (2006).

    CAS  Google Scholar 

  9. E. Kymakis, Appl. Phys. Lett. 80, 112 (2002).

    CAS  Google Scholar 

  10. J. Michael and O. Connell, Chem. Phys. Lett. 342, 265 (2001).

    Google Scholar 

  11. G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, and W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).

    CAS  Google Scholar 

  12. S. Palaniappan and A. John, Prog. Polym. Sci. 33, 732 (2008).

    CAS  Google Scholar 

  13. W.K. Jang, J. Yun, H.I. Kim, and Y.S. Lee, J. Carbon Lett. 12, 162 (2011).

    Google Scholar 

  14. J. Yun, H.I. Kim, and Y.S. Lee, Appl. Surf. Sci. 258, 3462 (2012).

    CAS  Google Scholar 

  15. T.H. Le, N.T. Trinh, L.H. Nguyen, H.B. Nguyen, V.A. Nguyen, and T.D. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025014 (2013).

    Google Scholar 

  16. M.S. Dorraji, I. Ahadzadeh, M.H. Rasoulifard, and M. Chitosan, Int. J. Hydrog. Energy 39, 9350 (2014).

    Google Scholar 

  17. H. Zhang, B. He, Q. Tang, and L. Yu, J. Power Sources 275, 489 (2015).

    CAS  Google Scholar 

  18. H.F. Cui, L. Du, P.B. Guo, and B. Zhu, J. Power Sources 283, 46 (2015).

    CAS  Google Scholar 

  19. A.M. Kumar and Z.M. Gasem, Prog. Org. Coat. 78, 387 (2015).

    Google Scholar 

  20. R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).

    CAS  Google Scholar 

  21. M. Wu, Y.W. Lin, and C.S. Liao, Carbon 43, 734 (2005).

    CAS  Google Scholar 

  22. J.A. Syed, H. Lu, S. Tang, and X. Meng, Appl. Surf. Sci. 325, 160 (2015).

    CAS  Google Scholar 

  23. Y. Chen, X.H. Wang, J. Li, J.L. Lu, and F.S. Wang, Corros. Sci. 49, 3052 (2007).

    CAS  Google Scholar 

  24. D.P. Le, Y.H. Yoo, J.G. Kim, S.M. Cho, and Y.K. Son, Corros. Sci. 51, 330 (2009).

    CAS  Google Scholar 

  25. C.-H. Chang and T.-C. Yeh, Carbon 50, 044 (2012).

    Google Scholar 

  26. Z.H. Zhang, D.Q. Zhang, L.H. Zhu, L.X. Gao, T. Lin, and W.G. Li, J. Coat. Technol. Res. 14, 1083 (2017).

    CAS  Google Scholar 

  27. M. Lakshmi, A.S. Roy, and S. Khasim, AIP Adv. 3, 112 (2013).

    Google Scholar 

  28. G. Theivandran, M. Ibrahim, and S. Murugan, J. Med. Plants Stud. 3, 30 (2015).

    Google Scholar 

  29. A.C. Ferrari and J. Robertson, J. RSC 362, 1824 (2004).

    Google Scholar 

  30. A. Eckmann, A. Felten, I. Verzhbitskiy, R. Davey, and C. Casiraghi, Phys. Rev. B 88, 035426 (2013).

    Google Scholar 

  31. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (2003).

    Google Scholar 

  32. T.M. Wu and Y.W. Lin, Polymer 47, 3576 (2006).

    CAS  Google Scholar 

  33. S. Khasim, Results Phys. 12, 1073 (2019).

    Google Scholar 

  34. S. Khasim and M. Lakshmi, Polym. Compos. 10, 24895 (2018).

    Google Scholar 

  35. R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).

    CAS  Google Scholar 

  36. R. Kumar, R. Rajendiran, H.K. Choudhary, G.M. Naveen Kumar, B. Balaiah, A.V. Anupama, and B. Sahoo, Nano-Struct. Nano-Objects 12, 229 (2017).

    CAS  Google Scholar 

  37. P. Kar and A. Choudhury, Sens. Actuators B Chem. 183, 25 (2013).

    CAS  Google Scholar 

  38. J.C. Dyre Schroder, Rev. Mod. Phys. 72, 873 (2000).

    Google Scholar 

  39. S. Khasim and O.A. Al-Hartomy, RSC Adv. 4, 39844 (2018).

    Google Scholar 

  40. A. Mishra and S.N. Choudhary, Phys. B 406, 3279 (2011).

    CAS  Google Scholar 

  41. Z.D. Xiang, T. Chen, and X.C. Bian, Macromol. Mater. Eng. 294, 91 (2009).

    CAS  Google Scholar 

  42. K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. B 280, 388 (2000).

    CAS  Google Scholar 

  43. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. Part B Polym. Phys. 33, 1737 (1995).

    CAS  Google Scholar 

  44. A.O. Al-Hartomy, S. Khasim, A. Roy, and A. Pasha, Appl. Phys. A 125, 12 (2019).

    Google Scholar 

  45. L.N. Shubha and P. Madhusudhan Rao, Int. J. Sci. Eng. Res. 6, 11 (2015).

    Google Scholar 

  46. W.S. Tait, Docs Publications (1994), p. 57.

  47. C.K. Tan and D.J. Blackwood, Corros. Sci. 45, 545 (2003).

    CAS  Google Scholar 

  48. P. Ocon, A.B. Cristol, P. Herrasti, and E. Fatas, Corros. Sci. 47, 649 (2005).

    CAS  Google Scholar 

  49. S. Sathiyanarayanan, S. Muthukrishnan, and G. Venkatachari, Prog. Org. Coat. 64, 460 (2009).

    Google Scholar 

  50. K.F. Khaled, Electrochim. Acta 48, 2493 (2003).

    CAS  Google Scholar 

  51. D.W. De Berry, J. Electrochem. Soc. 132, 1022 (1985).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the management and Principal of PES University, Bangalore South Campus, for their cooperation and assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apsar Pasha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajyalakshmi, T., Pasha, A., Khasim, S. et al. Enhanced Charge Transport and Corrosion Protection Properties of Polyaniline–Carbon Nanotube Composite Coatings on Mild Steel. J. Electron. Mater. 49, 341–352 (2020). https://doi.org/10.1007/s11664-019-07783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07783-6

Keywords

Navigation