Skip to main content
Log in

In situ observation of electric-field induced magnetic domain evolution in (Ba,Ca)(Ti,Zr)O3–CoFe2O4 multiferroic films

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The integration of ferroelectric and ferromagnetic promises an essential strategy of obtaining high performance electronic devices. In this work, we demonstrate in situ observation of electric field induced magnetic domain structure evolution for 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)TiO3–CoFe2O4 (BZT–0.5BCT/CFO) films, which manifests the magnetoelectric (ME) coupling between ferroelectric BZT–0.5BCT and ferrimagnetic CFO. The multiferroic behaviors of BZT–0.5BCT/CFO bilayers thin films were characterized by measuring ferroelectric domains, ferroelectric and ferrimagnetic hysteresis loops. The magnetic domain structure were investigated as functions of electric field, when the sample is applied with a voltage of 3 V, approximately 49.2% of the magnetization domain was varied in CFO thin films. The modulation of the domain structure could be attributed to the strain-induced mechanical transduction between the ferroelectric and magnetic films and modulation of the electron density of the CFO films. Direct observation of electric field induced magnetic domain evolution is significant since it gives a direct evidence of magnetoelectric coupling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203–212 (2019)

    Article  Google Scholar 

  2. J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, Nat. Commun. 2, 553 (2011)

    Article  Google Scholar 

  3. B. Dhanalakshmi, P. Kollu, C.H.W. Barnes, B.P. Rao, P.S.V. Subba Rao, Appl. Phys. A 5, 124 (2018)

    Google Scholar 

  4. L. Wang, D. Wang, Q. Cao, Y. Zheng, H. Xuan, J. Gao, Y. Du, Sci. Rep. 2, 223 (2012)

    Article  Google Scholar 

  5. N. Kumar, A. Shukla, R.N.P. Choudhary, Phys. Lett. 381, 2721–2730 (2017)

    Article  Google Scholar 

  6. N. Kumar, A. Shukla, R.N.P. Choudhary, Progress Nat. Sci. Mater. Int. 28, 308–314 (2018)

    Article  Google Scholar 

  7. N. Kumar, A. Shukla, Int. J. Mod. Phys. B 32, 1840069 (2018)

    Article  Google Scholar 

  8. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloys Comp. 747, 895–904 (2018)

    Article  Google Scholar 

  9. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

    Article  Google Scholar 

  10. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, RSC Adv. 8, 36939–36950 (2018)

    Article  Google Scholar 

  11. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)

    Article  Google Scholar 

  12. Y. Zhou, X.H. Li, J.F. Wang, H.M. Zhou, D. Cao, Z.W. Jiao, L. Xu, Q.H. Li, Appl. Phys. A 124, 335 (2018)

    Article  Google Scholar 

  13. P.R. Mandal, T.K. Nath, Appl. Phys. A 112, 789 (2013)

    Article  Google Scholar 

  14. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2010)

    Article  Google Scholar 

  15. A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, E. Quandt, J. Appl. Phys. 109, 104101 (2011)

    Article  Google Scholar 

  16. M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, Sci. Rep. 6, 32164 (2016)

    Article  Google Scholar 

  17. M. Naveed-Ul-Haq, V.V. Shvartsman, H. Trivedi, S. Salamon, S. Webers, H. Wende, U. Hagemann, J. Schröder, D.C. Lupascu, Acta Mater. 144, 305–313 (2018)

    Article  Google Scholar 

  18. R. Asiaie, W. Zhu, S.A. Akbar, P.K. Dutta, Chem. Mater. 8, 226 (1996)

    Article  Google Scholar 

  19. Y.D. Kolekar, A. Bhaumik, P.A. Shaikh, C.V. Ramana, K. Ghosh, J. Appl. Phys. 115, 154102 (2014)

    Article  Google Scholar 

  20. M.L. Mngdal, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. PaivaSantos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381 (2008)

    Article  Google Scholar 

  21. F.A. Rabuetti, R.L. Brutchey, J. Am. Chem. Soc. 134, 9475 (2012)

    Article  Google Scholar 

  22. T.C. Huang, M.T. Wang, H.S. Sheu, W.F. Hsieh, J. Phys. Condens. Matter. 19, 476212 (2007)

    Article  Google Scholar 

  23. Y. Shiratori, C. Pithan, J. Dornseier, R. Waser, J. Raman Spectrosc. 38, 1288 (2007)

    Article  Google Scholar 

  24. J.G. Lee, K.P. Chae, J.C. Sur, J. Magn, Magn. Mater. 267, 161–167 (2003)

    Article  Google Scholar 

  25. X. Chen, X. Zhu, W. Xiao, G. Liu, Y.P. Feng, J. Ding, R.W. Li, ACS Nano 9, 4210–4218 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant nos. 51502204, 61404091, 61274113, 61804108 and 51502203), the National Key Research and Development Program of China (Grant no. 2017YFB0405600) and Natural Science Foundation of Tianjin City (Grant nos. 18JCYBJC85700, 18JCZDJC30500 and 17JCYBJC16100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yemei Han or Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Han, Y., Tao, Z. et al. In situ observation of electric-field induced magnetic domain evolution in (Ba,Ca)(Ti,Zr)O3–CoFe2O4 multiferroic films. Appl. Phys. A 126, 54 (2020). https://doi.org/10.1007/s00339-019-3185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3185-5

Navigation