Skip to main content
Log in

Evaluation of Iminodiacetic Acid (IDA) as an Ionogenic Group for Adsorption of IgG1 Monoclonal Antibodies by Membrane Chromatography

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Iminodiacetic acid (IDA) is one of the chelating ligands most frequently employed in immobilized metal-ion affinity chromatography (IMAC) due to its ability to act as electron-pair donor, forming stable complexes with intermediate and borderline Lewis metal ions (electron acceptor). Thus, IDA can also be employed in ion exchange chromatography to purify positively charged proteins at neutral pH values. This study aimed to evaluate IDA as an ionogenic group (ion exchanger) immobilized on poly (ethylene vinyl alcohol) (PEVA) hollow fiber membranes for immunoglobulin G1 (IgG1) monoclonal antibody (MAb) purification. IDA-PEVA membranes showed considerable promise for MAb purification, since IgG1 was recovered in eluted fractions with traces of contaminants as confirmed by Western blotting and ELISA analysis. Quantification of IgG1 showed that a purity of 94.2% was reached in the elution step. Breakthrough curve and batch adsorption experiments showed that the MAb dynamic binding capacity (DBC) of 3.10 mg g−1 and the maximum adsorption capacity of 70 mg g−1 were of the same order of magnitude as those found in the literature. The results obtained showed that the IDA-PEVA hollow fiber membrane could be a powerful adsorbent for integrating large-scale processes for purification of MAb from cell culture supernatant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Porath, J. (1992). Immobilized metal ion affinity chromatography. Protein Expression and Purification, 3, 263–281. https://doi.org/10.1016/1046-5928(92)90001-D.

    Article  CAS  PubMed  Google Scholar 

  2. Wong, J. W., Albright, R., & Wang, N.-H. (1991). Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications. Separation and Purification Methods, 20, 49–106. https://doi.org/10.1080/03602549108021408.

    Article  CAS  Google Scholar 

  3. Chaga, G. S. (2001). Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. Journal of Biochemical and Biophysical Methods, 49, 313–334. https://doi.org/10.1016/S0165-022X(01)00206-8.

    Article  CAS  PubMed  Google Scholar 

  4. Bresolin, I. T. L., Miranda, E. A., & Bueno, S. M. A. (2009). Immobilized metal-ion affinity chromatography (IMAC) of biomolecules: fundamental aspects and technological applications. Quimica Nova, 32, 1288–1296. https://doi.org/10.1590/S0100-40422009000500035.

    Article  CAS  Google Scholar 

  5. Gutierrez, R., Martın del Valle, E. M., & Galan, M. A. (2007). Immobilized metal-ion affinity chromatography: status and trends. Separation and Purification Reviews, 36, 71–111. https://doi.org/10.1080/15422110601166007.

    Article  CAS  Google Scholar 

  6. Ueda, E. K. M., Gout, P. W., & Morganti, L. (2003). Current and prospective applications of metal ion-protein binding. Journal of Chromatography. A, 988(1), 1–23. https://doi.org/10.1016/S0021-9673(02)02057-5.

    Article  CAS  PubMed  Google Scholar 

  7. Gaberc-Porekar, V., & Menart, V. (2005). Potential for using histidine tags in purification of proteins at large scale. Chemical Engineering and Technology, 28, 1306–1314. https://doi.org/10.1002/ceat.200500167.

    Article  CAS  Google Scholar 

  8. Uygun, M., Akduman, B., Akgöl, S., & Denizli, A. (2013). A new metal-chelated cryogel for reversible immobilization of urease. Applied Biochemistry and Biotechnology, 170(8), 1815–1826. https://doi.org/10.1007/s12010-013-0316-x.

    Article  CAS  PubMed  Google Scholar 

  9. Mejri, F., Karmali, A., Jaoued, N., Casabianca, H., & Hosni, K. (2019). Purification and partial characterization of peroxidases from three food waste by products: broad bean pods, pea pods, and artichoke stems. Applied Biochemistry and Biotechnology, 189(2), 576–588.

    Article  CAS  Google Scholar 

  10. de Sousa, M., Melo, V. M. M., Hissa, D. C., Manzo, R. M., Mammarella, E. J., Antunes, A. S. L. M., García, J. L., Pessela, B. C., & Gonçalves, L. R. B. (2019). One-step immobilization and stabilization of a recombinant enterococcus faecium DBFIQ E36 L-arabinose isomerase for D-tagatose synthesis. Applied Biochemistry and Biotechnology, 188(2), 310–325.

    Article  Google Scholar 

  11. Cheung, R. C. F., Wong, J. H., & Ng, T. B. (2012). Immobilized metal ion affinity chromatography: a review on its applications. Applied Microbiology and Biotechnology, 96(6), 1411–1420. https://doi.org/10.1007/s00253-012-4507-0.

    Article  CAS  PubMed  Google Scholar 

  12. National Center for Biotechnology Information. PubChem Database (2019). Iminodiacetic acid, CID=8897 Available from https://pubchem.ncbi.nlm.nih.gov/compound/8897 Accessed May 14, 2019.

  13. Wei, Y., Huang, X., Chen, Q., & Geng, X. (2001). Preparation and chromatographic behavior of a bifunctional continuous rod for weak cation exchange and immobilized metal affinity chromatography. Journal of Liquid Chromatography and Related Technologies, 24, 2983–2998. https://doi.org/10.1081/JLC-100107351.

    Article  CAS  Google Scholar 

  14. Dinh, N. P., Cam, Q. M., Nguyen, A. M., Shchukarev, A., & Irgum, K. (2009). Functionalization of epoxy-based monoliths for ion exchange chromatography of proteins. Journal of Separation Science, 32(15-16), 2556–2564. https://doi.org/10.1002/jssc.200900243.

    Article  CAS  PubMed  Google Scholar 

  15. Li, X., Wang, Q., Dong, X., Liu, Y., & Sun, Y. (2018). Grafting glycidyl methacrylate-iminodiacetic acid conjugate to Sepharose FF for fabrication of high-capacity protein cation exchangers. Biochemical Engineering Journal, 138, 74–80. https://doi.org/10.1016/j.bej.2018.07.004.

    Article  CAS  Google Scholar 

  16. Adikane, H. V., & Iyer, G. J. (2013). Chemical modification of ethyl cellulose-based highly porous membrane for the purification of immunoglobulin G. Applied Biochemistry and Biotechnology, 169(3), 1026–1038. https://doi.org/10.1007/s12010-012-0085-y.

    Article  CAS  PubMed  Google Scholar 

  17. Tao, Y., Ibraheem, A., Conley, L., Cecchini, D., & Ghose, S. (2014). Evaluation of high capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes. Biotechnology and Bioengineering, 111(7), 1354–1364. https://doi.org/10.1002/bit.25192.

    Article  CAS  PubMed  Google Scholar 

  18. Petsch, D., Deckwer, W. D., Anspach, F. B., Legallais, C., & Vijayalakshmi, M. (1998). Endotoxin removal with poly (ethyleneimine)-immobilized adsorbers: Sepharose 4B versus flat sheet and hollow fiber membranes. Journal of Chromatography B, 707, 121–130. https://doi.org/10.1016/S0378-4347(97)00599-9.

    Article  CAS  Google Scholar 

  19. Léo, P., Ucelli, P., Augusto, E. F. P., Oliveira, M. S., & Tamashiro, W. M. S. C. (2000). Anti-TNP monoclonal antibodies as reagents for enzyme immunoassay (ELISA). Hybridoma, 19(6), 473–478. https://doi.org/10.1089/027245700750053968.

    Article  PubMed  Google Scholar 

  20. El-Kak, A., & Vijayalakshmi, M. A. (1991). Study of the separation of mouse monoclonal antibodies by pseudobioaffinity chromatography using matrix-linked histidine and histamine. Journal of Chromatography, 570(1), 29–41. https://doi.org/10.1016/0378-4347(91)80198-L.

    Article  CAS  PubMed  Google Scholar 

  21. Serpa, G., Augusto, E. F. P., Tamashiro, W. M. S. C., Ribeiro, M. B., Miranda, E. A., & Bueno, S. M. A. (2005). Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody. Journal of Chromatography B, 816, 259–268. https://doi.org/10.1016/j.jchromb.2004.11.043.

    Article  CAS  Google Scholar 

  22. Bresolin, I. T. L., Borsoi-Ribeiro, M., Tamashiro, W. M. S. C., Augusto, E. F. P., Vijayalskhmi, M. A., & Bueno, S. M. A. (2010). Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG1 monoclonal antibodies purification: the effect of chelating ligand and support. Applied Biochemistry and Biotechnology, 160(7), 2148–2165. https://doi.org/10.1007/s12010-009-8734-5.

    Article  CAS  PubMed  Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  24. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  25. Morrissey, J. H. (1981). Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Analytical Biochemistry, 117, 307–310. https://doi.org/10.1016/0003-2697(81)90783-1.

    Article  CAS  PubMed  Google Scholar 

  26. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350–4354. https://doi.org/10.1073/pnas.76.9.4350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pavan, G. L., Bresolin, I. T. L., Borsoi-Ribeiro, M., Vijayalakshmi, M., & Bueno, S. M. A. (2014). The effect of NaCl on the adsorption of human IgG onto CM-Asp-PEVA hollow fiber membrane-immobilized nickel and cobalt metal ions. Adsorption, 20(5-6), 677–688. https://doi.org/10.1007/s10450-014-9612-1.

    Article  CAS  Google Scholar 

  28. Bossi, A., & Righetti, P. G. (1997). Generation of peptide maps by capillary zone electrophoresis in isoelectric iminodiacetic acid. Electrophoresis, 18(11), 2012–2018. https://doi.org/10.1002/elps.1150181122.

    Article  CAS  PubMed  Google Scholar 

  29. Medda, L., Monduzzi, M., & Salis, A. (2015). The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chemical Communications, 51(30), 6663–6666. https://doi.org/10.1039/C5CC01538C.

    Article  CAS  PubMed  Google Scholar 

  30. Demir, E. F., Kuru, C. I., Uygun, M., Uygun, D. A., & Akgöl, S. (2018). Antibody separation using lectin modified poly (HEMA-EDMA) hydrogel membranes. Journal of Biomaterials Science. Polymer Edition, 29(4), 344–359. https://doi.org/10.1080/09205063.2017.1417197.

    Article  CAS  PubMed  Google Scholar 

  31. Ozkara, S., Yavuz, H., & Denizli, A. (2003). Purification of immunoglobulin G from human plasma by metal-chelate affinity chromatography. Journal of Applied Polymer Science, 89, 1567–1572. https://doi.org/10.1002/app.12312.

    Article  CAS  Google Scholar 

  32. Anspach, F. B., Petsch, D., & Deckwer, W. D. (1996). Purification of murine IgG1 on group specific affinity sorbents. Bioseparation, 6(3), 165–184.

    CAS  PubMed  Google Scholar 

  33. Bayramoglu, G., Celik, G., & Arica, M. Y. (2006). Immunoglobulin G adsorption behavior of L-histidine ligand attached and Lewis metal ions chelated affinity membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 287, 75–85. https://doi.org/10.1016/j.colsurfa.2006.03.027.

    Article  CAS  Google Scholar 

  34. Pássaro, A. C. M., Mozetic, T. M., Schmitz, J. E., Silva Jr., I. J., Martins, T. D., & Bresolin, I. T. L. (2019). Human immunoglobulin G adsorption in epoxy chitosan/alginate adsorbents: evaluation of isotherms by artificial neural networks. Chemical Product and Process Modeling, 14(4), 20190077. https://doi.org/10.1515/cppm-2019-0077.

  35. Schwark, S., Sun, W., Stute, J., Lutkemeyer, D., Ulbricht, M., & Sellergren, B. (2016). Monoclonal antibody capture from cell culture supernatants using epitope imprinted macroporous membranes. RSC Advances, 6, 53162–53169. https://doi.org/10.1039/c6ra06632a.

    Article  CAS  Google Scholar 

  36. Boi, C., Dimartino, S., Hofer, S., Horak, J., Williams, S., Sarti, G. C., & Lindner, W. (2011). Influence of different spacer arms on mimetic ligand™ A2P and B14 membranes for human IgG purification. Journal of Chromatography B, 879, 1633–1640. https://doi.org/10.1016/j.jchromb.2011.03.059.

    Article  CAS  Google Scholar 

  37. Sartorius (2019) https://www.sartorius.com/shop/us/en/usd/applications-laboratory-chromatography/sartobind%c2%ae-protein-a/p/93PRAP06HB-12%2D%2DA Accessed: June 12, 2019.

Download references

Acknowledgments

The authors are grateful to Dr. W.M.S.C. Tamashiro and Dr. E.F.P. Augusto for providing the cell supernatant and assistance with the ELISA tests.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, Brazil (grant number 2004/09896-8) and a MSc fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brazil (grant number 141930/2006-3). It was also partially financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Tadeu Lazzarotto Bresolin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresolin, I.T.L., Bresolin, I.R.A.P. & Bueno, S.M.A. Evaluation of Iminodiacetic Acid (IDA) as an Ionogenic Group for Adsorption of IgG1 Monoclonal Antibodies by Membrane Chromatography. Appl Biochem Biotechnol 191, 810–823 (2020). https://doi.org/10.1007/s12010-019-03217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03217-5

Keywords

Navigation