Skip to main content

Advertisement

Log in

Autophagy Dysfunction and mTOR Hyperactivation Is Involved in Surgery: Induced Behavioral Deficits in Aged C57BL/6J Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Autophagy is crucial for cell survival, development, division, and homeostasis. The mammalian target of rapamycin (mTOR), which is the foremost negative controller of autophagy, plays a key role in many endogenous processes. The present study investigated whether rapamycin can ameliorate surgery—induced cognitive deficits by inhibiting mTOR and activating autophagy in the hippocampus. Both adult and aged C57BL/6J mice received an intraperitoneal injection of rapamycin (10 mg/kg/day) for 5 days per week for one and a half months. Mice were then subjected to partial hepatectomy under general anesthesia. Behavioral performance was assessed on postoperative days 3, 7, and 14. Hippocampal autophagy-related (Atg)-5, phosphorylated mTOR, and phosphorylated p70S6K were examined at each time point. Brain derived neurotrophic factor (BDNF), synaptophysin, and tau hyperphosphorylation (T396) in the hippocampus were also examined. Surgical trauma and anesthesia exacerbated spatial learning and memory impairment in aged mice on postoperative days 3 and 7. Following partial hepatectomy, the levels of phosphorylated mTOR, phosphorylated 70S6K, and phosphorylated tau were all increased in the hippocampus. A corresponding decline in BDNF and synaptophysin were observed. Rapamycin treatment restored autophagy function, attenuated phosphorylation of tau protein, and increased BDNF and synaptophysin expression in the hippocampus of surgical mice. Furthermore, surgery and anesthesia induced spatial learning and memory impairments were also reversed by rapamycin treatment. Autophagy impairments and mTOR hyperactivation were detected along with surgery—induced behavioral deficits. Inhibiting the mTOR signaling pathway with rapamycin successfully ameliorated surgery-related cognitive impairments by sustaining autophagic degradation, inhibiting tau hyperphosphorylation, and increasing synaptophysin and BDNF expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moller JT, Cluitmans P, Rasmussen LS et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet (London, England) 351:857–861

    Article  CAS  Google Scholar 

  2. Fidalgo AR (2013) Experimental insights into age-exacerbated cognitive dysfunction after peripheral surgery. Aging Cell 12:523–524

    Article  CAS  PubMed  Google Scholar 

  3. Chang SY, Lee SN, Yang JY, Kim DW, Yoon JH, Ko HJ, Ogawa M, Sasakawa C, Kweon MN (2013) Autophagy controls an intrinsic host defense to bacteria by promoting epithelial cell survival: a murine model. PLoS ONE 8:e81095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3:1272–1285

    Article  CAS  PubMed  Google Scholar 

  5. Patel KK, Stappenbeck TS (2013) Autophagy and intestinal homeostasis. Annu Rev Physiol 75(1):241–262

    Article  CAS  PubMed  Google Scholar 

  6. Ro SH, Jung CH, Hahn WS et al (2013) Distinct functions of ulk1 and ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy 9(12):2103–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Domenico F, Head E, Butterfield DA et al (2014) Oxidative stress and proteostasis network: culprit and casualty of Alzheimer’s-like neurodegeneration. Adv Geriatr 2014:1–14

    Article  Google Scholar 

  9. Gratuze M, El Khoury NB, Turgeon A, Julien C, Marcouiller F, Morin F et al (2017) Tau hyperphosphorylation in the brain of ob/ob mice is due to hypothermia: importance of thermoregulation in linking diabetes and Alzheimer’s disease. Neurobiol Dis 98:1–8

    Article  CAS  PubMed  Google Scholar 

  10. Wong YC, Holzbaur ELF (2015) Autophagosome dynamics in neurodegeneration at a glance. J Cell Sci 128(7):1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mohammadi M, Guan J, Khodagholi F, Yans A, Khalaj S, Gholami M et al (2016) Reduction of autophagy markers mediated protective effects of JNK inhibitor and bucladesine on memory deficit induced by Aβ in rats. Naunyn Schmiedebergs Arch Pharmacol 389(5):501–510

    Article  CAS  PubMed  Google Scholar 

  12. Wenzhen S, Keliang L, Jiawan W, Anshi W, Yun Y (2016) Activation of mTOR signaling leads to orthopedic surgery—induced cognitive decline in mice through β-amyloid accumulation and tau phosphorylation. Mol Med Rep 14(4):3925–3934

    Article  CAS  Google Scholar 

  13. Yu X, Long YC, Shen HM (2015) Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 11(00):1711–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crino PB (2016) The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 12(7):379–392

    Article  CAS  PubMed  Google Scholar 

  15. Xu Z, Dong Y, Wang H et al (2014) Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice. Sci Rep 4:3766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sarkar S (2013) Regulation of autophagy by mtor-dependent and mtor-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41(5):1103–1130

    Article  CAS  PubMed  Google Scholar 

  17. Dioli C, Patrício P, Trindade R, Pinto LG et al (2017) Tau-dependent suppression of adult neurogenesis in the stressed hippocampus. Mol Psychiatry 22(8):1110–1118

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Hu X, Wang J et al (2018) Inhibition of autophagy via activation of PI3 k/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 42(4):1917–1924

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R et al (2015) Alteration of mTOR signaling occurs early in the progression of alzheimer disease (ad): analysis of brain from subjects with pre-clinical ad, amnestic mild cognitive impairment and late-stage ad. J Neurochem 133(5):739–749

    Article  CAS  PubMed  Google Scholar 

  20. Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49

    Article  CAS  PubMed  Google Scholar 

  21. Hovens IB, Schoemaker RG, van der Zee EA, Heineman E, Nyakas C, van Leeuwen BL (2013) Surgery—induced behavioral changes in aged rats. Exp Gerontol 48:1204–1211

    Article  PubMed  Google Scholar 

  22. Matsushita Y, Sakai Y, Shimmura M et al (2016) Corrigendum: Hyperactive mTOR signals in the proopiomelanocortin-expressing hippocampal neurons cause age-dependent epilepsy and premature death in mice. Sci Rep 6:27164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hovens IB, Schoemaker RG, Heineman E, Nyakas C et al (2013) Surgery—induced behavioral changes in aged rats. Exp Gerontol 48(11):1204–1211

    Article  PubMed  Google Scholar 

  24. Zhang D, Li N, Wang Y, Lu W, Zhang Y, Chen Y, Deng X, Yu X (2019) Methane ameliorates post-operative cognitive dysfunction by inhibiting microglia NF-kappaB/MAPKs pathway and promoting IL-10 expression in aged mice. Int Immunopharmacol 71:52–60

    Article  CAS  PubMed  Google Scholar 

  25. Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radical Biol Med 62:170–185

    Article  CAS  Google Scholar 

  26. Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Majumder S, Richardson A, Strong R et al (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6:e25416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu XC, Yu JT, Jiang T et al (2013) Autophagy modulation for Alzheimer’s disease therapy. Mol Neurobiol 48:702–714

    Article  CAS  PubMed  Google Scholar 

  29. Spilman P, Podlutskaya N, Hart MJ et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 5:e9979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Perez SE, He B, Nadeem M et al (2015) Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment:corrleation with aβ and tau pathology. J Neuropathol Exp Neurol 74:345–358

    Article  PubMed  CAS  Google Scholar 

  31. Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  32. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huber KM, Klann E, Costa-Mattioli M, Zukin RS (2015) Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J Neurosci 35:13836–13842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun T, Liu Z, Liu M et al (2019) Hippocampus-specific Rictor knockdown inhibited 17β-estradiol induced neuronal plasticity and spatial memory improvement in ovariectomized mice. Behav Brain Res 17(364):50–61

    Article  CAS  Google Scholar 

  35. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    Article  PubMed  CAS  Google Scholar 

  40. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC et al (2014) The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoon WH, Sandoval H, Nagarkar-Jaiswal S et al (2017) Loss of nardilysin, a mitochondrial co-chaperone for α-ketoglutarate dehydrogenase, promotes mTORC1 activation and neurodegeneration. Neuron 4 93(1):115–131

    Article  CAS  Google Scholar 

  42. Rohn TT, Wirawan E, Brown RJ et al (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78

    Article  CAS  PubMed  Google Scholar 

  43. Tramutola A, Triplett JC, Di Domenico F et al (2015) Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133:739–749

    Article  CAS  PubMed  Google Scholar 

  44. Salminen A, Kaarniranta K, Kauppinen A et al (2013) Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54

    Article  PubMed  CAS  Google Scholar 

  45. Manthari RK, Tikka C, Ommati MM et al (2018) Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3 K/Akt/mTOR signaling pathway: involvement of blood-brain barrier’s tight junction proteins. Arch Toxicol 92(11):3255–3275

    Article  CAS  PubMed  Google Scholar 

  46. Yu Z, Ma J, Li X et al (2018) Autophagy defects and related genetic variations in renal cell carcinoma with eosinophilic cytoplasmic inclusions. Sci Rep 8:9972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Caccamo A, Magri A, Medina DX et al (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380

    Article  CAS  PubMed  Google Scholar 

  48. Shen W, Ganetzky B (2009) Autophagy promotes synapse development in Drosophila. J Cell Biol 187:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sundberg M, Tochitsky I, Buchholz DE et al (2018) Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry 23(11):2167–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh AK, Kashyap MP, Tripathi VK et al (2017) Neuroprotection through rapamycin-induced activation of autophagy and PI3 K/Akt/mTOR/CREB Signaling against amyloid-β-induced oxidative stress, synaptic/neuro transmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol 54(8):5815–5828

    Article  CAS  PubMed  Google Scholar 

  52. Luo R, Su LY, Li G et al (2019) Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 22:1–18

    Google Scholar 

  53. Bjorkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    Article  PubMed  CAS  Google Scholar 

  54. Weichhart T (2012) Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life. Methods Mol Biol 821:1–14

    Article  CAS  PubMed  Google Scholar 

  55. Gao J, Xiong B, Zhang B et al (2018) Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: the role of BDNF-mTOR signaling pathway. Neuroscience 388:357–366

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ma.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhou, Y., Ma, H. et al. Autophagy Dysfunction and mTOR Hyperactivation Is Involved in Surgery: Induced Behavioral Deficits in Aged C57BL/6J Mice. Neurochem Res 45, 331–344 (2020). https://doi.org/10.1007/s11064-019-02918-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02918-x

Keywords

Navigation