Skip to main content

Advertisement

Log in

Enhanced Mechanical and Electrical Properties of a Cu-Ni-Si Alloy by Thermo-mechanical Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two different thermo-mechanical processing routes, single-cold-rolling and double-cold-rolling, are adopted to process a Cu-Ni-Si alloy, and their effects on the microstructure and properties of the alloys are investigated. While keeping identical aging treatments and equivalent total cold-rolling deformation, 45-minute final aging at 450 °C endows the double-cold-rolling-processed alloys with a tensile strength of 754 ± 12 MPa, higher than 691 ± 3 MPa for the single-cold-rolling-processed alloys, whereas their electrical conductivities are close (~ 39 pct IACS). The final aging at 450 °C for 4 hours, on the other hand, renders the double-cold-rolling-processed alloy an electrical conductivity of 52.6 pct IACS, greater than 43.7 pct IACS for the single-cold-rolling-processed alloy, whereas their strengths are approximately identical (~ 705 MPa). The superior mechanical and electrical properties in the double-cold-rolling-processed alloy with the final aging time from 45 minutes to 4 hours are attributed to the dissolution of large precipitates during the second cold rolling followed by the acceleration of fine and uniformly dispersed precipitates in the final aging. Finally, the effects of dislocations, grain boundaries, solute atoms, and precipitates on the mechanical and electrical properties of the examined Cu-Ni-Si alloy are discussed on the theoretical basis, which can provide guidelines to further processing optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Ziewiec, K. Bryła, A. Błachowski, K. Ruebenbauer and D. Mucha: J. Alloys Compd., 2009, vol. 483, pp. 585-88.

    Article  CAS  Google Scholar 

  2. J. Yi, Y.L. Jia, Y.Y. Zhao, Z. Xiao, K.J. He, Q. Wang, M.P. Wang and Z. Li: Acta Mater., 2019, vol. 166, pp. 261-70.

    Article  CAS  Google Scholar 

  3. Q. Liu, Z. Xiang, Y. Ge, J. Wang and J.Z. Cui: Metall. Mater. Trans. A., 2006, vol. 37, pp. 3233-38.

    Article  CAS  Google Scholar 

  4. Y. Zhang, B.H. Tian, A.A. Volinsky, H.L. Sun, Z. Chai, P. Liu, X.H. Chen and Y. Liu: J Mater Eng Perform., 2016, vol. 25, pp. 1336-41.

    Article  CAS  Google Scholar 

  5. W. Wang, H. Kang, Z. Chen, Z.J. Chen, C.L. Zou, R.G. Li, G.M. Yin and T.M. Wang: Mater. Sci. Eng A., 2016, vol. 673, pp. 378-90.

    Article  CAS  Google Scholar 

  6. E. Lee, S. Han, K. Euh, S.H. Lim and S.S. Kim: Met. Mater. Int., 2011, vol. 17, pp. 569-76.

    Article  CAS  Google Scholar 

  7. C. Watanabe, S. Takeshita and R Monzen: Metall. Mater. Trans. A., 2015, vol. 46, pp. 2469-75.

    Article  Google Scholar 

  8. J.Y. Cheng, B.B. Tang, F.X. Yu and B Shen: J. Alloys Compd., 2014, vol. 614, pp. 189-95.

    Article  CAS  Google Scholar 

  9. F.L. Hadj, H. Azzeddine, T. Baudin, M.H. Mathon, F. Brisset, A.L. Helbert, M. Kawasaki, D. Bradai and T.G. Langdon: J. Alloys Compd., 2015, vol. 638, pp. 88-94.

    Article  Google Scholar 

  10. A.Y. Khereddine, F.L. Hadj, H. Azzeddine, T. Baudin, F. Brisset, A.L. Helbert, M.H. Mathon, M. Kawasaki, D. Bradai and T.G. Langdon: J. Alloys Compd., 2013, vol. 574, pp. 361-67.

    Article  CAS  Google Scholar 

  11. A.Y. Khereddine, F.L. Hadj, M. Kawasaki, T. Baudin, D. Bradai and T.G. Langdon: Mater. Sci. Eng A., 2013, vol. 576, pp. 149-55.

    Article  CAS  Google Scholar 

  12. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki and Y. Waseda: J. Alloys Compd., 2006, vol. 417, pp. 116-20.

    Article  CAS  Google Scholar 

  13. Q. Lei, Z. Li, Y. Gao, X. Peng and B.J. Derby: J. Alloys Compd., 2017, vol. 695, pp. 2413-23.

    Article  CAS  Google Scholar 

  14. A. Ventura, C. Marvel, G. Pawlikowski, M. Bayes, M. Watanabe, R. Vinci and W. Misiolek: Metall. Mater. Trans. A., 2017, vol. 48, pp. 6070-6082.

    Article  Google Scholar 

  15. G.M. Stoica, D.E. Fielden, R. McDaniels, Y. Liu, B. Huang, P. K. Liaw, C. Xu and T.G. Langdon: Mater. Sci. Eng A., 2005, vol. 410, pp. 239-42.

    Article  Google Scholar 

  16. T. Tsuchiyama, S. Yamamoto, S. Hata, M. Murayama, S. Morooka, D. Akama and S. Takaki: Acta Mater., 2016, vol. 113, pp. 48-55.

    Article  CAS  Google Scholar 

  17. M. Gholami, J. Vesely, I. Altenberger, H.A. Kuhn, M. Janecek, M. Wollmann and L. Wagner: J. Alloys Compd., 2017, vol. 696, pp. 201-12.

    Article  CAS  Google Scholar 

  18. Williamson GK, Hall WH: Acta Metal., 1953, vol. 1, pp. 22-22.

    Article  CAS  Google Scholar 

  19. S. Brandstetter, P.M. Derlet, S. Van Petegem and H, Van Swygenhoven: Acta Mater., 2008, vol. 56, pp. 165-76.

  20. Avrami, M.: J CHEM PHYS., 1939, vol. 7, pp.1103-12.

    Article  CAS  Google Scholar 

  21. J.R. Davis: Copper and Copper Alloys, ASM international, New York, NY, 2001.

    Google Scholar 

  22. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia and J.M. Schoenung: Acta Mater, 2014, vol. 62, pp. 141-155.

    Article  CAS  Google Scholar 

  23. R. Labusch: Phys. Status Solidi B., 1970, vol. 41, pp. 659-69.

    Article  Google Scholar 

  24. L. Balogh, T. Ungár, Y.H. Zhao, Y.T. Zhu, Z. Horita, C. Xu and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 809-20.

    Article  CAS  Google Scholar 

  25. J. Miyake, G. Ghosh and M.E. Fine: MRS BULL., 1996, vol. 21, pp. 13-18.

    Article  CAS  Google Scholar 

  26. S. A. Lockyer and F. W. Noble: J MATER SCI., 1994, vol. 29, pp. 218-26

    Article  CAS  Google Scholar 

  27. Argon A S, Orowan E: Phy Today., 1971, vol. 24, pp. 60-60.

    Article  Google Scholar 

  28. T. Gladman: Met. Sci. J., 1999, vol. 15, pp. 30-36.

    CAS  Google Scholar 

  29. Y. Wu, Y. Li, J.Y. Liu, S. Tan, F. Jiang and J Sun: Mater. Sci. Eng A., 2018, vol. 731, pp. 403-12.

    Article  CAS  Google Scholar 

  30. N. J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  31. N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801-06.

    Article  CAS  Google Scholar 

  32. V. Verma, V. Pandey, V.N. Shukla, S. Annapoorni and R.K. Kotnala: Solid State Commun., 2009, vol. 149, pp. 1726-30.

    Article  CAS  Google Scholar 

  33. L. Tian, I. Anderson, T. Riedemann and A. Russell: Acta Mater., 2014, vol. 77, pp. 151-61.

    Article  CAS  Google Scholar 

  34. G. Ghosh, J. Miyake and M. Fine: JOM., 1997, vol. 49, pp. 56-60.

    Article  CAS  Google Scholar 

  35. H. Xie, L. Jia and Z. Lu: Mater. Charact., 2009, vol. 60, pp. 114-18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0301300) and the National Natural Science Foundation of China (Nos. 51974028, 51504023 and U1602271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 7, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Fu, H., Wang, C. et al. Enhanced Mechanical and Electrical Properties of a Cu-Ni-Si Alloy by Thermo-mechanical Processing. Metall Mater Trans A 51, 331–341 (2020). https://doi.org/10.1007/s11661-019-05507-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05507-3

Navigation