Skip to main content
Log in

Model of Enhanced Strength and Ductility of Metal/Graphene Composites with Bimodal Grain Size Distribution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model is proposed that describes plastic deformation in metal/graphene composites with a bimodal grain size distribution of the metallic matrix. Within the model, dislocation pile-ups are generated in large grains at Frank–Read sources, and their stresses promote dislocation motion within the nanocrystalline/ultrafine-grained phase. Also, the presence of graphene gives rise to the mechanisms of strengthening, such as the load transfer to graphene platelets, thermal-mismatch-induced strengthening and Orowan strengthening, as well as to back stress hardening. We demonstrated that the strengthening and strain hardening in bimodal metal/graphene composites are dominated by the Orowan strengthening and back stress hardening. The results also indicate that regardless of the lateral size of graphene platelets, bimodal metal/graphene composites can simultaneously have high yield strength and large uniform deformation but the values of the yield strength and critical uniform deformation are higher in the case of small graphene platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Ma, T. Zhu: Mater. Today, 2017, vol. 20, pp. 323-331.

    CAS  Google Scholar 

  2. V.L. Tellkamp, A. Melmed, E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2335-2343.

    CAS  Google Scholar 

  3. Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma: Nature, 2002, vol. 419, pp. 912-915.

    CAS  Google Scholar 

  4. C.C. Koch: Scripta Mater., 2003, vol. 49, pp. 657-662.

    CAS  Google Scholar 

  5. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297-302.

    CAS  Google Scholar 

  6. Y.S. Li, Y. Zhang, N.R. Tao, K. Lu: Scripta Mater., 2008, vol. 59, pp. 475-478.

    CAS  Google Scholar 

  7. Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, E.J. Lavernia: Adv. Mater., 2008, vol. 20, pp. 3028-3033.

    CAS  Google Scholar 

  8. G. Dirras, J. Gubicza, Q.H. Bui, T. Szilagyi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1206-1214.

    Google Scholar 

  9. K.S. Raju, V.S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, G. Wilde: Acta Mater., 2013, vol. 61, pp. 228-238.

    Google Scholar 

  10. M.J. Shen, B.H. Zhang, X.J. Wang, M.F. Zhang, M.Y. Zheng, K. Wu: Comp. Sci. Tech., 2015, vol. 118, pp. 85-93.

    CAS  Google Scholar 

  11. T.H. Fang, W.L. Li, N.R. Tao, K. Lu: Science, 2011, vol. 331, pp. 1587-1590.

    CAS  Google Scholar 

  12. A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, J. Lu: Acta Mater., 2011, vol. 59, pp. 3697-3709.

    CAS  Google Scholar 

  13. H.T. Wang, N.R. Tao, K. Lu: Scripta Mater., 2013, vol. 68, pp. 22-27.

    CAS  Google Scholar 

  14. Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao: Nature Commun., 2014, vol. 5, 3580.

    Google Scholar 

  15. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, Y.T. Zhu, Proc. Nat. Acad. Sci. 2014, vol. 111, pp. 7197-7201.

    CAS  Google Scholar 

  16. X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu: Acta Mater., 2016, vol. 112, pp. 337-346.

    CAS  Google Scholar 

  17. Z. Ma, J. Liu, G. Wang, H. Wang, Y. Wei, H. Gao: Sci. Rep., 2016, vol. 6, 22156.

    CAS  Google Scholar 

  18. S.C. Cao, J. Liu, L.L. Zhu, L. Li, M. Dao, J. Lu, R.O. Ritchie: Sci. Rep., 2018, vol. 8, 5088.

    Google Scholar 

  19. L. Zhu, C. Wen, C. Gao, X. Guo, Z. Chen, J. Lu: Int. J. Plasticity, 2019, vol. 114, pp. 272-288.

    CAS  Google Scholar 

  20. K. Lu, F.K. Yan, H.T. Wang, N.R. Tao: Scripta Mater., 2012, vol. 66, pp. 878-883.

    CAS  Google Scholar 

  21. H.T. Wang, N.R. Tao, K. Lu: Acta Mater., 2012, vol. 60, pp. 4027-4040.

    CAS  Google Scholar 

  22. F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu: Acta Mater., 2012, vol. 60, pp. 1059-1071.

    CAS  Google Scholar 

  23. F.K. Yan, N.R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, K. Lu: Acta Mater., 2014, vol. 81, pp. 487-500.

    CAS  Google Scholar 

  24. J.G. Kim, N.A. Enikeev, J.B. Seol, M.M. Abramova, M.V. Karavaeva, R.Z. Valiev, C.G. Park, H.S. Kim: Sci. Rep., 2018, vol. 8, 11200.

    Google Scholar 

  25. X. Wu, F. Yang, M. Yang, P. Jiang, X. Zhang, L. Chen, Y. Wei, E. Ma: Sci. Rep., 2015, vol. 5, 11728.

    Google Scholar 

  26. S. Ramtani, G. Dirras, H.Q. Bui: Mech. Mater., 2010, vol. 42, pp. 522-536.

    Google Scholar 

  27. L.L. Zhu, J. Lu: Int. J. Plast., 2012, vol. 30-31, pp. 166-184.

    Google Scholar 

  28. L.L. Zhu, S.Q. Shi, K. Lu, J. Lu: Acta Mater., 2012, vol. 60, pp. 5762-5772.

    CAS  Google Scholar 

  29. X. Guo, X.Y. Dai, G.J. Weng, L.L. Zhu, J. Lu: Acta Mech., 2014, vol. 225, pp. 1093-1106.

    Google Scholar 

  30. X. Guo, R. Ji, G.J. Weng, L.L. Zhu, J. Lu: Mater. Sci. Eng. A, 2014, vol. 618, pp. 479-489.

    CAS  Google Scholar 

  31. A.C. Magee, L. Ladani: Mech. Mater., 2015, vol. 82, pp. 1–12.

    Google Scholar 

  32. L. Zhu, X. Guo, H. Ruan, J. Lu, Comp. Sci. Technol., 2016, vol. 123, pp. 222-231.

    CAS  Google Scholar 

  33. T. Borkar, H. Mohseni, J. Hwang, T.W. Scharf, J.S. Tiley, S.H. Hong, R. Banerjee: J. Alloys and Compds., 2015, vol. 646, pp. 135-144.

    CAS  Google Scholar 

  34. M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, J. Mao: J. Magnesium Alloys, 2013, vol. 1, pp. 242-248.

    CAS  Google Scholar 

  35. X. Zhang, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, W. Bacsa, N. Zhao, C. He: Nanoscale, 2017, vol. 9, pp. 11929-11938.

    CAS  Google Scholar 

  36. Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, DB Xiong, Q. Guo, Z. Li, D. Zhang: Carbon, 2019, vol. 146, pp. 17-27.

    CAS  Google Scholar 

  37. X. Liu, J. Li, E. Liu, C. He, C. Shi, N. Zhao: Mater. Sci. Eng. A, 2019, vol. 748, pp. 52-58.

    CAS  Google Scholar 

  38. M. Yang, L. Weng, H. Zhu, T. Fan, D. Zhang, H. Zhu: Carbon, 2017, vol. 118, pp. 250-260.

    CAS  Google Scholar 

  39. S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, M. Zheng: Sci. Rep., 2016, vol. 6, 38824.

    CAS  Google Scholar 

  40. A.F. Boostani, S. Yazdani, R.T. Mousavian, S. Tahamtan, R.A. Khosroshahi, D. Wei, D. Brabazon, J.Z. Xu, X.M. Zhang, Z.Y. Jiang: Mater. Des., 2015, vol. 88, pp. 983-989.

    Google Scholar 

  41. S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae: Carbon, 2015, vol. 82, pp. 143-151.

    CAS  Google Scholar 

  42. M. Zhao, D.-B. Xiong, Z. Tan, G. Fan, Q. Guo, C. Guo, L. Zhiqiang, D. Zhang: Scripta Mater., 2017, vol. 139, pp. 44-48.

    CAS  Google Scholar 

  43. G.I. Taylor: J. Inst. Metals, 1938, vol. 62, pp.307-324.

    Google Scholar 

  44. M.Yu. Gutkin, I.A. Ovid’ko, N.V. Skiba: Philos. Mag., 2008, vol. 88, pp. 1137–1151.

    CAS  Google Scholar 

  45. R.A. Masumura, P.M. Hazzledine, C.S. Pande: Acta Mater., 1998, vol. 46: 4527-4534.

    CAS  Google Scholar 

  46. U.F. Kocks, H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171-273.

    CAS  Google Scholar 

  47. Y. Estrin, H. Mecking: Acta Metall., 1984, vol. 32, pp. 57-70.

    Google Scholar 

  48. O. Bouaziz, S. Allain, S. Scott: Scripta Mater., 2008, vol. 58, pp. 484–487.

    CAS  Google Scholar 

  49. R.W. Armstrong: Philos. Mag., 2016, vol. 96, pp. 3097-3108.

    CAS  Google Scholar 

  50. A. Considère: Annales des Ponts et Chaussées, 1885, vol. 9, pp. 574-775.

    Google Scholar 

  51. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter: Scripta Metall., 1989, vol. 23, pp. 1679-1684.

    CAS  Google Scholar 

  52. H.S. Kim, Y. Estrin, M.B. Bush: Acta Mater., 2000, vol. 48, pp. 493-504.

    CAS  Google Scholar 

  53. A.A. Fedorov, M.Y. Gutkin, I.A. Ovid’ko: Scripta Mater., 2002, vol. 47, pp. 51-55.

    CAS  Google Scholar 

  54. H. Conrad, J. Narayan: Scripta Mater., 2000, vol. 42, pp. 1025-1030.

    CAS  Google Scholar 

  55. M.Yu. Gutkin, I.A. Ovid’ko, C.S. Pande: Philos. Mag., 2004, vol. 84, pp. 847-863.

    CAS  Google Scholar 

  56. L.M. Brown, D.R. Clarke: Acta Metall., 1975, vol. 23, pp. 821-830.

    CAS  Google Scholar 

  57. H.L. Cox, Br.: J. Appl. Phys., 1952, vol. 3, pp. 72-79.

    Google Scholar 

  58. R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov: Comp. Sci. Technol., 2012, vol. 72, pp. 1459-1476.

    CAS  Google Scholar 

  59. S.C. Tjong: Mater. Sci. Eng. Rep., 2013, vol. 74, pp. 281-350.

    Google Scholar 

  60. Z. Li, R.J. Young, I.A. Kinloch, N.R. Wilson, A.J. Marsden, A.P.A. Raju: Carbon, 2015, vol. 88, pp. 215-24.

    CAS  Google Scholar 

  61. G. Papageorgiou, I.A. Kinloch, R.J. Young: Prog. Mater. Sci., 2017, vol. 90, pp. 75-127.

    CAS  Google Scholar 

  62. R. Xu, G. Fan, Z. Tan, G. Ji, C. Chen, B. Beausir, D.-B. Xiong, Q. Guo, C. Guo, Z. Li, D. Zhang: Mater. Res. Lett., 2018, vol. 6, pp. 113-120.

    CAS  Google Scholar 

  63. X. Liu, J.T. Robinson, Z. Wei, P.E. Sheehan, B.H. Houston, E.S. Snow: Diamond & Related Materials, 2010, vol. 19, pp. 875-878.

    CAS  Google Scholar 

  64. A. Melander: Scand. J. Metall., 1978, vol. 7, pp. 109-113.

    CAS  Google Scholar 

  65. J.P. Hirth, J. Lothe: Theory of Dislocations, Wiley, New York, 1982.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Russian Ministry of Education and Science (tasks 16.3483.2017/PCh and 3.3194.2017/4.6) and the Russian Foundation for Basic Research (Grant 18-29-19086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sheinerman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 5, 2019.

Appendix A

Appendix A

In this Appendix, we calculate the average effective distances, \( l_{0} \) and \( l \), between the edges of neighboring graphene platelets for the cases where they lie inside a grain or in a GB, respectively. First, we cast the average distance \( l_{0} \) between the projections of the points B and D of the intersection of the edges of neighboring graphene platelets and the dislocation slip plane on the initially straight line of moving dislocation (Figure A1(a)).

Fig. A1
figure 7

Geometry of graphene platelets and moving dislocations in bimodal metal/graphene composites. (a) Graphene platelets are located in a grain interior. The left and right parts of the figure depict the dislocation slip plane and graphene platelet plane, respectively. (b) Graphene platelets lie in the GB

To do so, we denote the number of graphene platelets per unit volume as \( N_{V} \). Then, in the examined case of platelets in the form of discs of diameter \( L \) and thickness \( H \), we have the following relation between \( N_{V} \) and the volume fraction \( f_{V} \) of graphene: \( f_{V} = \pi L^{2} HN_{V} /4 \). In turn, the number of graphene platelets that intersect a dislocation slip plane per its unit area is \( N_{S} = N_{V} L < \cos \theta > \), where \( \theta \) is the angle between the platelet plane and the normal to the dislocation slip plane. In the approximation where \( \theta \) represents a random variable in the range \( 0 \le \theta \le \pi /2 \), we have \( < \cos \theta > = 2/\pi \), and so \( N_{S} = (2/\pi )N_{V} L = 8f_{V} /(\pi^{2} LH) \).

The average distance \( \lambda \) between the projections of the centers, K and O, of the segments, AB and DE, produced by the intersections of neighboring platelets with the dislocation slip plane, on the dislocation line is \( \lambda = 1/\sqrt {N_{S} } = \pi \sqrt {LH/(8f_{V} )} \). In turn, the average total length of the two segments, BK and DO (see Figure A1) is \( p = L < \cos \varphi > = (2/\pi )L \), where \( \varphi \) is the angle displayed in Figure A1(a). Then the average total length of the projections of segments BK and DO onto the dislocation line is \( p < \cos \delta > = (2/\pi )p = (4/\pi^{2} )L \), where \( \delta \) is the angle between the segment BK and the dislocation line (see Figure A1(a)). As a result, we obtain

$$ l_{0} = \lambda - \frac{4L}{{\pi^{2} }} = \pi \sqrt {\frac{{L{\kern 1pt} H}}{{8f_{V} }}} - \frac{4L}{{\pi^{2} }}, $$
(A1)

which coincides with formula [20] of the main text.

Now calculate the average distance \( l \) between the points of the intersection of the edges of two neighboring graphene platelets, lying in the same GB, with the straight line of a GB dislocation (Figure A1(b)). Let \( f_{\text{gr}} \) be the fraction of the GB occupied by graphene platelets. Then the number of graphene platelets per unit GB area \( N_{\text{S}}^{\text{GB}} \) is \( N_{\text{S}}^{\text{GB}} = 4f_{\text{gr}} /(\pi L^{2} ) \). To calculate the distance \( l \), consider the simplified model case where the GB has the shape of a square with the size \( d_{\text{GB}} \) and a straight line with the coordinate \( y = y_{l} \) is parallel to a side of the square GB (Figure A1(b)). Then the number of graphene platelets per unit length of this line is \( N_{\text{S}}^{\text{GB}} d_{\text{GB}} \). The average number of platelets that intersect this line (per its unit length) is \( N_{\text{S}}^{\text{GB}} d_{\text{GB}} P_{\text{av}} \), where \( P_{\text{av}} \) is the probability that a random graphene platelet intersects the line with a random value of the coordinate \( y_{l} \).

First, examine the case where \( d_{\text{GB}} > 2L \). In this case, for \( L < y_{l} < d_{\text{GB}} - L \), the probability \( P_{1} \) of the intersection of this line with a random platelet is \( P_{1} = L/(d_{\text{GB}} - L) \). Here \( d_{\text{GB}} - L \) is length of the interval of all possible coordinates of platelet centers (lying in the range \( L/2 < y < d_{\text{GB}} - L/2 \)), and \( L \) is the length of the interval of the possible coordinates of the centers of the platelets that intersect the straight line. For \( y_{l} < L \) and \( y_{l} > d_{\text{GB}} - L \), the probability of the intersection is \( P_{2} = y_{l} /(d_{\text{GB}} - L) \) and \( (d_{\text{GB}} - y_{l} )/(d_{\text{GB}} - L) \), respectively. The probability of the intersection between the line with a random coordinate \( y_{l} \) and a random graphene platelet is \( P_{\text{av}} (d_{\text{GB}} > 2L) = \frac{{(d_{\text{GB}} - 2L)P_{1} \, + 2L < P_{2} > }}{{d_{\text{GB}} }} \), where \( < P_{2} > \) is the average value of \( P_{2} \) in the interval \( 0 < y_{l} < L \). Since \( < P_{2} > = L/[2(d_{\text{GB}} - L)] \), from the latter relation for \( P_{\text{av}} \) we obtain \( P_{\text{av}} (d_{\text{GB}} > 2L) = L/d_{\text{GB}} \).

Now consider the case where \( d_{\text{GB}} \le 2L \) and, for definiteness, assume that the straight line lies in the lower half of the GB, that is, \( y_{l} \le d_{\text{GB}} /2 \). In this case, the probability of the intersection of the straight line and a random platelet is \( P_{3} = 1 \) for \( d_{\text{GB}} - L \le y_{l} \le d_{\text{GB}} /2 \) and follows as \( P_{4} = y_{l} /(d_{GB} - L) \) for \( 0 \le y_{l} < d_{GB} - L \). The probability of the intersection between the line with a random coordinate \( y_{l} \) and a random graphene platelet is \( P_{\text{av}} (d_{\text{GB}} \le 2L) = \frac{{P_{3} [d_{\text{GB}} /2 - (d_{\text{GB}} - L)] + < P_{4} > (d_{\text{GB}} - L)}}{{d_{\text{GB}} /2}} \), where \( < P_{4} > \) is the average value of \( P_{4} \) in the interval \( 0 \le y_{l} < d_{\text{GB}} - L \) . Since \( < P_{4} > = 1/2 \), we obtain \( P_{av} (d_{GB} \le 2L) = L/d_{GB} \).

Thus, regardless of the value of the GB length \( d_{\text{GB}} \), we have \( P_{\text{av}} = L/d_{\text{GB}} \). Consequently, the number \( N_{\text{S}}^{\text{GB}} d_{\text{GB}} P_{\text{av}} \) of the graphene platelets that intersect a random straight line spanning the GB (per unit length of this line) equals \( N_{\text{S}}^{\text{GB}} L \). As a result, the average distance \( \lambda_{\text{GB}} \) between the centers, K′ and O′, of the segments produced by the intersection of neighboring graphene platelets with a specified straight line in the GB follows as \( \lambda_{\text{GB}} = 1/(N_{\text{S}}^{\text{GB}} L) = \pi L/(4f_{\text{gr}} ) \). The average total length of the segments A’K’ and B’O’ (see Figure A1(b)) is \( (2/\pi )L \). As a consequence, we obtain

$$ l = \lambda_{\text{GB}} - (2/\pi )L = \frac{{(\pi^{2} - 8f_{\text{GB}} )L}}{{4\pi f_{\text{GB}} }} $$
(A2)

which coincides with formula [23] of the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheinerman, A.G., Gutkin, M.Y. Model of Enhanced Strength and Ductility of Metal/Graphene Composites with Bimodal Grain Size Distribution. Metall Mater Trans A 51, 189–199 (2020). https://doi.org/10.1007/s11661-019-05500-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05500-w

Navigation