Skip to main content
Log in

Assessing Experimental Parameter Space for Achieving Quantitative Electron Tomography for Nanometer-Scale Plastic Deformation

  • Topical Collection: 3D Materials Science
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Integrating in situ deformation and electron tomography (ET) techniques allows us to visualize the materials’ response to an applied stress with nanometer spatial resolution. The capability of structural, chemical, and morphological characterization in three-dimension real time and at sub-microscopic levels alleviates several persistent problems of two-dimensional imaging such as the projection effect and postmortem appearance. On the other hand, implementing deformation mechanism introduces additional experimental constraints that could influence the accuracy of the reconstructed volumes in a different way. To materialize quantitative and statistically relevant microstructure interpretation by time-resolved ET, we evaluated several key parameters such as angular tilt range, tilt increment, and reconstruction algorithms to characterize their influences on the accuracy of size and morphology reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1 J. Kacher, G.S. Liu, and I.M. Robertson: Micron, 2012, vol. 43, pp. 1099–107.

    Article  CAS  Google Scholar 

  2. 2 J. Jung, J. Lee, H.-W. Park, T. Chang, H. Sugimori, and H. Jinnai: Macromolecules, 2014, vol. 47, pp. 8761–7.

    Article  CAS  Google Scholar 

  3. 3 B. Hudson: J. Microsc., 1973, vol. 98, pp. 396–401.

    Article  Google Scholar 

  4. 4 E. Oveisi, A. Letouzey, D.T.L. Alexander, Q. Jeangros, R. Schäublin, G. Lucas, P. Fua, and C. Hébert: Sci. Rep., 2017, vol. 7, p. 10630.

    Article  Google Scholar 

  5. 5 B. Modéer: Scr. Metall., 1974, vol. 8, pp. 1145–52.

    Article  Google Scholar 

  6. 6 J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: Philos. Mag., 2006, vol. 86, pp. 4901–22.

    Article  CAS  Google Scholar 

  7. 7 W. Baumeister, R. Grimm, and J. Walz: Trends Cell Biol., 1999, vol. 9, pp. 81–5.

    Article  CAS  Google Scholar 

  8. 8 S. Hata, S. Miyazaki, H. Miyazaki, T. Gondo, K. Kawamoto, N. Horii, K. Sato, H. Furukawa, H. Kudo, and M. Murayama: Microscopy, 2016, vol. 66, pp. 143–53.

    Google Scholar 

  9. 9 N. Kawase, M. Kato, H. Nishioka, and H. Jinnai: Ultramicroscopy, 2007, vol. 107, pp. 8–15.

    Article  CAS  Google Scholar 

  10. 10 D.N. Mastronarde: J. Struct. Biol., 1997, vol. 120, pp. 343–52.

    Article  CAS  Google Scholar 

  11. 11 S. Hata, H. Miyazaki, S. Miyazaki, M. Mitsuhara, M. Tanaka, K. Kaneko, K. Higashida, K. Ikeda, H. Nakashima, S. Matsumura, J.S. Barnard, J.H. Sharp, and P.A. Midgley: Ultramicroscopy, 2011, vol. 111, pp. 1168–75.

    Article  CAS  Google Scholar 

  12. 12 R. Leary, Z. Saghi, P.A. Midgley, and D.J. Holland: Ultramicroscopy, 2013, vol. 131, pp. 70–91.

    Article  CAS  Google Scholar 

  13. 13 Z. Saghi, G. Divitini, B. Winter, R. Leary, E. Spiecker, C. Ducati, and P.A. Midgley: Ultramicroscopy, 2016, vol. 160, pp. 230–8.

    Article  CAS  Google Scholar 

  14. 14 K. Sato, H. Miyazaki, T. Gondo, S. Miyazaki, M. Murayama, and S. Hata: Microscopy, 2015, vol. 64, pp. 369–75.

    Article  CAS  Google Scholar 

  15. 15 P.A. Midgley and M. Weyland: Ultramicroscopy, 2003, vol. 96, pp. 413–31.

    Article  CAS  Google Scholar 

  16. 16 G.T. Herman and R. Davidi: Inverse Probl., 2008, vol. 24, p. 45011.

    Article  CAS  Google Scholar 

  17. 17 K. Sato, K. Aoyagi, and T.J. Konno: J. Appl. Phys., 2010, vol. 107, p. 24304.

    Article  Google Scholar 

Download references

Acknowledgments

The microscopy was carried out in the Nanoscale Characterization and Fabrication Laboratory, Institute for Critical Technology and Applied Science, Virginia Tech. The authors would like to acknowledge Dr. W. T. Reynolds Jr. (Virginia Tech), Dr. Satoshi Hata (Kyusyu University) for their constructive discussion. Y. Y. was financially supported by the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a Member of the National Nanotechnology Coordinated Infrastructure (NNCI) supported by NSF (ECCS 1542100). Funding for this project was partly provided by DOE BES Geosciences (DE-FG02-06ER15786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Murayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 1, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YP., Furukawa, H., Horii, N. et al. Assessing Experimental Parameter Space for Achieving Quantitative Electron Tomography for Nanometer-Scale Plastic Deformation. Metall Mater Trans A 51, 20–27 (2020). https://doi.org/10.1007/s11661-019-05345-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05345-3

Navigation