Skip to main content
Log in

Electronic Polarizability, Optical Basicity, Thermal, Mechanical and Optical Investigations of (65B2O3–30Li2O–5Al2O3) Glasses Doped with Titanate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Titanium-doped and titanium-free lithium borate glasses were prepared using a quenching method and high-purity-grade chemical substances. Structural analysis was carried out by Fourier transform infrared (FT-IR) spectroscopy and mechanical measurement. The states of the produced glasses were examined by x-ray diffraction, and the density (ρ) and molar volume (Vm) were determined. The Makishima–Mackenzie model was applied for the prepared glasses. FT-IR confirmed that the concentration of [BO4] was greater than that of [BO3] structural units. These variations confirmed that the compactness of the lithium borate network increased as the concentration of (TiO2/B2O3) increased. The longitudinal (vL) and shear (vT) velocities of the samples with varying concentrations of (TiO2/B2O3) were found to increase, along with the elastic moduli. The thermal stability, energy gap, and refractive index of the prepared glasses increased as the concentration of (TiO2/B2O3) was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.A. Taha and A.A. Azab, J. Electron. Mater. 45, 5170 (2016).

    CAS  Google Scholar 

  2. T.A. Taha and A.S. Abouhaswa, J. Mater. Sci.: Mater. Electron. 29, 8100 (2018).

    CAS  Google Scholar 

  3. P. Venkat-Reddy, C. Laxmi-kanth, V. Prasanth-Kumar, N. Veeraiah, and P. Kistaiah, J. Non-Cryst. Solids 351, 3752 (2005).

    Google Scholar 

  4. F. El-Diasty, M. Abdel-Baki, and F.A. Abdel-Wahab, Opt. Quant. Electron. 48, 273 (2016).

    Google Scholar 

  5. B.V.R. Chowdari and R. Zhou, Solid State Ionics 78, 133 (1995).

    CAS  Google Scholar 

  6. V. Naresh and S. Buddhudu, Ceram. Int. 38, 2325 (2012).

    CAS  Google Scholar 

  7. M.R. Ahmed, K.C. Sekhar, A. Hameed, M.N. Chary, and M. Shareefuddin, Int. J. Mod. Phys. B 32, 1850095 (2018).

    CAS  Google Scholar 

  8. T. Kalpana, Y. Gandhi, B. Sanyal, V. Sudarsan, P. Bragiel, M. Piasecki, V. Ravi kumar, and N. Veeraiah, J. Lumin. 179, 44 (2016).

    CAS  Google Scholar 

  9. C. Tirupataiah, T. Narendrudu, S. Suresh, P. Srinivasa Rao, P.M. Vinaya Teja, M.V. Sambasiva Rao, and D. Krishna Rao, Opt. Mater. 73, 7 (2017).

    CAS  Google Scholar 

  10. M. Abdel-Baki and F. El-Diasty, Int. J. Opt. Appl. 3, 125 (2013).

    Google Scholar 

  11. C.R. Gautam, S. Dixit, and A. Madheshiya, J. Spectrosc. Lett. 48, 280 (2015).

    CAS  Google Scholar 

  12. C Gautam, J. Phys. Res. Int. 1 (2014).

  13. T.A. Taha and Y.S. Rammah, J. Mater. Sci.: Mater. Electron. 27, 1384 (2015).

    Google Scholar 

  14. M. Abdel-Baki, F. El-Diasty, and F.A. Abdel-Wahab, J. Mater. Chem. Phys. 96, 201 (2006).

    CAS  Google Scholar 

  15. A.M. Abdelghany and H.A. ElBatal, J. Non-Cryst. Solids 379, 214 (2013).

    CAS  Google Scholar 

  16. K.A. Aly, Y.B. Saddeek, and I.M.E. Kashef, J. Optoelectron. Adv Mater. 19, 623 (2017).

    CAS  Google Scholar 

  17. V.E. Eremyashev, G.G. Korinevskaya, and S.S. Bukalov, J. Glass Ceram. 72, 405 (2016).

    CAS  Google Scholar 

  18. Y.B. Saddeek, K.H.S. Shaaban, K.A. Aly, R.S. Farag, and M.M. Uosif, Int. J. Horiz. Phys. 2, 53 (2015).

    Google Scholar 

  19. A. Makishima and J.D. Mackenzie, J. Non-Cryst. Solids 12, 35 (1973).

    CAS  Google Scholar 

  20. A. Makishima and J.D. Mackenzie, J. Non-Cryst. Solids 17, 147 (1975).

    CAS  Google Scholar 

  21. K.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, and M.E. Hassouna, Appl. Phys. A 123, 457 (2017).

    Google Scholar 

  22. Y. Moustafa, H. Doweidar, and G. El Damrawi, Phys. Chem. Glasses 35, 104 (1994).

    CAS  Google Scholar 

  23. E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, J. Phys. Chem. Glass. 91, 1067 (1987).

    CAS  Google Scholar 

  24. A.S. Tenny and J.S. Wang, J. Phys. 56, 5516 (1972).

    Google Scholar 

  25. A.K. Yadav, C.R. Gautam, A.K. Yadav, and C.R. Gautam, Lucknow J. Sci. 8, 26 (2011).

    Google Scholar 

  26. Ross, S. D. McGraw-Hill, New York, (1972).

  27. A.S. Tenny and J.J. Wong, J. Chem. Phys. 56, 5516 (1972).

    Google Scholar 

  28. N. Elkhoshkhany, M.A. Khatab, and M.A. Kabary, Ceram. Int. 44, 2789 (2018).

    CAS  Google Scholar 

  29. R. Iordanova, V. Dimitrov, Y. Dimitriev, and D. Klissurski, J. Non-Cryst. Solids 180, 58 (1994).

    CAS  Google Scholar 

  30. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban, and H.A. Farroh, Appl. Phys. A 125(4) (2019).

  31. G. Ramadevudu, S.R.L. Srinivasa, M.S.A. Hameed, and M.C. Narasimha, Int. J. Eng. Sci. Technol. 3, 6998 (2011).

    Google Scholar 

  32. R. Laopaiboon, S. Nontachat, S. Pencharee, J. Laopaiboon, and C. Bootjomchai, Radiat. Effect. Defects Solids 169, 862 (2014).

    CAS  Google Scholar 

  33. H. Doweidar, G. El-Damrawi, and Sh El-Stohy, Phys. B 525, 137 (2017).

    CAS  Google Scholar 

  34. Ulrike Veit and Christian Rüssel, J. Mater. Sci. 52, 8159 (2017).

    CAS  Google Scholar 

  35. K.S. Shaaban and Y.B. Saddeek, Silicon 9, 785 (2017).

    CAS  Google Scholar 

  36. K.H.S. Shaaban, Y.B. Saddeek, M.A. Sayed, and I.S. Yahia, Silicon 10, 1973 (2018).

    CAS  Google Scholar 

  37. Y.B. Saddeek, K.A. Aly, K.H.S. Shaaban, A. Mossad-Ali, and M.A. Sayed, Silicon 11, 1253 (2018).

    Google Scholar 

  38. D. Sushama and P. Predeep, J. Appl. Phys. Math. 4, 139 (2014).

    CAS  Google Scholar 

  39. E.A.A. Wahab and K.S. Shaaban, Mater. Res. Exp. 5, 025207 (2018).

    Google Scholar 

  40. M. Ren, S. Cai, W. Zhang, T. Liu, X. Wu, P. Xu, and D. Wang, J. Non-Cryst. Solids 380, 78 (2013).

    CAS  Google Scholar 

  41. T.A. Taha, Polym. Bull. 76, 903 (2019).

    CAS  Google Scholar 

  42. T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, and M.K. El-Mansy, Polym. Bull. 76, 4769 (2019).

    CAS  Google Scholar 

  43. T.A. Taha, J. Mater. Sci.: Mater. Electron. 28, 12108 (2017).

    CAS  Google Scholar 

  44. T.A. Taha and A. Saleh, Appl. Phys. A 124, 600 (2018).

    Google Scholar 

  45. T.A. Taha, Z. Ismail, and M.M. Elhawary, Appl. Phys. A 124, 307 (2008).

    Google Scholar 

  46. S. El-Rabaie, T.A. Taha, and A.A. Higazy, Phys. B 429, 1 (2013).

    CAS  Google Scholar 

  47. N.S. Sabri, A.K. Yahya, and M. Kumar-Talari, Trans. Indian Inst. Met. 70, 557 (2017).

    CAS  Google Scholar 

  48. M.A. Marzouk, F.H. ElBatal, and H.A. ElBatal, Opt. Mater. 57, 14 (2016).

    CAS  Google Scholar 

  49. F.H. ElBatal, M.A. Marzouk, and H.A. ElBatal, J. Mol. Struct. 1121, 54 (2016).

    CAS  Google Scholar 

  50. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, and G. Bhikshamaiah, J Non Cryst Solids 354, 5573 (2008).

    CAS  Google Scholar 

  51. S. Thakur, V. Thakur, A. Kaur, and L. Singh, J. Non. Cryst. Solids 512, 60 (2019).

    CAS  Google Scholar 

  52. V. Thakur, A. Singh, R. Punia, M. Kaur, and L. Singh, Cera. Inter. 41, 10957 (2015).

    CAS  Google Scholar 

  53. V. Dimitrov and S.I. Sakka, J. Appl. Phys. 79, 1736 (1996).

    CAS  Google Scholar 

  54. V. Dimitrov and T. Komatsu, J. Solid-State Chem. 163, 100 (2002).

    CAS  Google Scholar 

  55. L. Singh, V. Thakur, R. Punia, R.S. Kundu, and A. Singh, Solid State Sci. 37, 64 (2014).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Al-Azhar University for support with the experimental measurements. In addition, the authors thank the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project (No. R.G.P2./22/40) under the Research Center for Advanced Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Wahab, E.A.A., Shaaban, E.R. et al. Electronic Polarizability, Optical Basicity, Thermal, Mechanical and Optical Investigations of (65B2O3–30Li2O–5Al2O3) Glasses Doped with Titanate. J. Electron. Mater. 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07889-x

Keywords

Navigation