Skip to main content
Log in

Current–Voltage Characterization of Transparent ITO/ZnO:B/ZnO:(Al + In)/Ag Schottky Diodes Prepared with Multilayer Films by Sol–Gel Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We fabricated a ZnO-based Schottky diode via the deposition of a ZnO film co-doped with Al + In (4 at.%) on a boron-doped ZnO film (8 at.%). Each film was prepared by layering coatings (2, 3, 4, and 5 layers) by sol–gel deposition. The finished diode consists of the combination of seven layers (each layer with a thickness of around 90 nm). The total thickness of the diode is around 700 nm. The films were previously studied and structurally, optically and electrically characterized. Additionally, for comparative purposes, we fabricated and characterized un-doped ZnO films. The energy bandgap values of the un-doped films, mono-doped films, and co-doped films were 3.30 eV, 3.32 eV, and 3.34 eV, respectively. X-ray diffraction did not show traces of different phases from hexagonal Wurtzite-type ZnO. The electrical resistivity values obtained were 386, 4.44 × 104, and 3.37 Ω-cm, respectively. The junction diodes were built by depositing layers of the high-resistivity material (ZnO:B) on ITO conductor substrates, followed by the deposition of layers of the low-resistivity material (ZnO:Al + In) on the same substrate. The IV characteristics of these diodes were analyzed in terms of the number of the deposited layers (or the different thickness of the films). The results show a Schottky-type behavior in the dark and under light (spot lamp of 160 W), which is controlled by the thickness of the resistive layer. From the IV curves, the characteristic parameters including barrier height, ideality factor, and series resistance were calculated. From the transconductance (gm=dI/dV), it was possible to identify the presence of all the layer–layer interfaces. Depending on the thickness of the resistive ZnO:B film, we found a region of negative differential resistance and a region of visible light detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.K. Kaushik, C. Mukherjee, and P.K. Sen, J. Mater. Sci. Mater. Electron. 29, 15156 (2018).

    CAS  Google Scholar 

  2. X. Liu, K. Pan, W. Li, D. Hu, S. Liu, and Y. Wang, Ceram. Int. 40, 9931 (2014).

    CAS  Google Scholar 

  3. F. Rahman, Opt. Eng. 58, 1 (2019).

    Google Scholar 

  4. E.B. Magnusson, B.H. Williams, R. Manenti, M.S. Nam, A. Nersisyan, M.J. Peterer, and P.J. Leek, Appl. Phys. Lett. 106, 1 (2015).

    Google Scholar 

  5. M. Zaharescu, S. Mihaiu, A. Toader, I. Atkinson, J. Calderon-Moreno, M. Anastasescu, M. Nicolescu, M. Duta, M. Gartner, K. Vojisavljevic, B. Malic, V.A. Ivanov, and E.P. Zaretskaya, Thin Solid Films 571, 727 (2014).

    CAS  Google Scholar 

  6. M. Hjiri, R. Dhahri, K. Omri, L.E. Mir, S.G. Leonardi, N. Donato, and G. Neri, Mat. Sci. Semicon. Proc. 27, 319 (2014).

    CAS  Google Scholar 

  7. M.I. Medina-Montes, S.H. Lee, M. Perez, L.A. Baldenegro-Perez, M.A. Quevedo-Lopez, B. Gnade, and R. Ramirez-Bon, J. Electron. Mat. 40, 1461 (2011).

    CAS  Google Scholar 

  8. M.I. Medina-Montes, H. Arizpe-Chávez, L.A. Baldenegro-Perez, M.A. Quevedo-Lopez, and R. Ramirez-Bon, J. Electron. Mat. 41, 1962 (2012).

    CAS  Google Scholar 

  9. M.D. Morales Acosta, M.A. Quevedo López, and R. Ramírez Bon, Mat. Chem. Phys. 146, 380 (2014).

    CAS  Google Scholar 

  10. H. Durmuş and ş. Karataş, Int. J. Electron. (2018). https://doi.org/10.1080/00207217.2018.1545145.

    Article  Google Scholar 

  11. P. Cova, A. Singh, and R.A. Masut, J. Appl. Phys. 82, 5217 (1997).

    CAS  Google Scholar 

  12. A. Buyukbas-Ulusan, S. Altındal-Yerişkin, and A. Tataroğlu, J. Mater. Sci. Mater. Electron. 29, 16740 (2018).

    CAS  Google Scholar 

  13. R. Padma and V.R. Reddy, J. Optoelectron. Adv. Mater. 16, 31 (2014).

    Google Scholar 

  14. Y.S. Hsieh, C.Y. Li, ChM Lin, N.F. Wang, J.V. Li, and M.P. Houng, Thin Solid Films 685, 414 (2019).

    CAS  Google Scholar 

  15. A. Shetty, B. Roul, S. Mukundan, L. Mohan, G. Chandan, K.J. Vinoy, and S.B. Krupanidhi, AIP Adv. 5, 1 (2015).

    Google Scholar 

  16. G. Kalita, M. Kobayashi, M. Dzulsyahmi, R.D. Mahyavanshi, and M. Tanemura, Phys. Status Solidi A 215, 1 (2018).

    Google Scholar 

  17. A. Kurtz, E. Muñoz, J.M. Chauveau, and A. Hierro, J. Phys. D Appl. Phys. 50, 1 (2017).

    Google Scholar 

  18. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and K. Rogacki, J. Electron. Mat. 48, 4934 (2019).

    CAS  Google Scholar 

  19. J. Shewchun, A. Waxman, and G. Warfield, Solid State Electronic 10, 1165 (1967).

    Google Scholar 

  20. J. Hu, A. Nainani, Y. Sun, K.C. Saraswat, and H.S.P. Wong, Appl. Phys. Lett. 99, 1 (2011).

    Google Scholar 

  21. T.H. Chiang and J.F. Wager, IEEE Trans. Electron Devices 65, 223 (2018).

    CAS  Google Scholar 

  22. G.M. Ali and P. Chakrabartia, Appl. Phys. Lett. 97, 1 (2010).

    Google Scholar 

  23. H. Huang, G. Fang, X. Mo, H. Long, L. Yuan, B. Dong, X. Meng, and X. Zhao, IEEE Electron Dev. Lett. 30, 1063 (2009).

    CAS  Google Scholar 

  24. X. Yang, Y. Gu, M.A. Migliorato, and Y. Zhang, Nano Res. 9, 1290 (2016).

    CAS  Google Scholar 

  25. J. Jin, J. Zhang, A. Shaw, V.N. Kudina, I.Z. Mitrovic, J.S. Wrench, P.R. Chalker, C. Balocco, A. Song, and S. Hall, J. Phys. D Appl. Phys. 51, 1 (2018).

    Google Scholar 

  26. P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, Opt. Express 17, 11434 (2009).

    CAS  Google Scholar 

  27. V. Srikant and D.R. Clarke, J. Appl. Phys. 83, 5447 (1998).

    CAS  Google Scholar 

  28. V.A. Fonoberov and A.A. Balandin, J. Nanoelectron. Optoe. 1, 19 (2006).

    Google Scholar 

  29. E. Burstein, Phys. Rev. 93, 632 (1954).

    CAS  Google Scholar 

  30. S. Karatas, S. Altindal, A. Türüt, and A. Özmen, Appl. Surf. Sci. 217, 250 (2003).

    CAS  Google Scholar 

  31. M.K. Hudait and S.B. Krupanidhi, Mater. Sci. Eng. B Solid 87, 141 (2001).

    Google Scholar 

  32. H.L. Skriver and N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992).

    CAS  Google Scholar 

  33. Y. Park, V. Choong, Y. Gao, B.R. Hsieh, and C.W. Tang, Appl. Phys. Lett. 68, 2699 (1996).

    CAS  Google Scholar 

  34. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, and D.B. Chrisey, Appl. Phys. Lett. 76, 259 (2000).

    CAS  Google Scholar 

  35. G.W. Wang, C.X. Yang, H.W. Gao, Y.H. Liu, J.F. Han, G.T. Luo, and G. Zou, Carbon 42, 317 (2004).

    CAS  Google Scholar 

  36. M. Nakano, A. Tsukazaki, R.Y. Gunji, K. Ueno, A. Ohtomo, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 91, 1 (2007).

    Google Scholar 

  37. M.W. Allen, M.M. Alkaisi, and S.M. Durbin, Appl. Phys. Lett. 89, 1 (2006).

    Google Scholar 

  38. J. Meyer, P. Görrn, S. Hamwi, H.-H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 93, 1 (2008).

    Google Scholar 

  39. H. Cheun, J. Kim, Y. Zhou, Y. Fang, A. Dindar, J. Shim, C. Fuentes-Hernandez, K.H. Sandhage, and B. Kippelen, Opt. Express 18, A506 (2010).

    CAS  Google Scholar 

  40. S. Nadiah, C. Azmi, S. Fadzli, A. Rahman, A. Nawabjan, and A.M. Hashim, Microelectron. Eng. 196, 32 (2018).

    Google Scholar 

  41. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).

    CAS  Google Scholar 

  42. J.A. Röhr, D. Moia, S.A. Haque, T. Kirchartz, and J. Nelson, J. Phys. Condens. Matter 30, 3 (2018).

    Google Scholar 

  43. D. Fang, K. Lin, T. Xue, C. Cui, X. Chen, P. Yao, and H. Li, J. Alloys Compd. 589, 346 (2014).

    CAS  Google Scholar 

  44. T. Tohsophon, N. Wattanasupinyo, B. Silskulsuk, and N. Sirikulrat, Thin Solid Films 520, 726 (2011).

    CAS  Google Scholar 

  45. V. Mirkhani, K. Yapabandara, S. Wang, M.P. Khanal, S. Uprety, M.S. Sultan, B. Ozden, A.C. Ahyi, M.C. Hamilton, M.H. Sk, and M. Park, Thin Solid Films 672, 152 (2019).

    CAS  Google Scholar 

  46. D. Lee, J.W. Park, N.K. Cho, J. Lee, and Y.S. Kim, Sci. Rep. 9, 1 (2019).

    Google Scholar 

  47. A. Tataroglu, Chin. Phys. B 22, 1 (2013).

    Google Scholar 

  48. S.J. Young, L.W. Ji, S.J. Chang, S.H. Liang, K.T. Lam, T.H. Fang, K.J. Chen, X.L. Du, and Q.K. Xue, Sens. Actuat. A. Phys. 141, 225 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from DIFUS (Research Department in Physics from the University of Sonora) as well as CONACYT (National Council of Science and Technology) from Mexico. We are grateful for the technical assistance of Alfredo Muñoz and Rodrigo Chávez Urbiola from CINVESTAV Querétaro, México. We also appreciate the help of Mrs. Ma. Del Carmen Ruelas Brau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Arizpe-Chávez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Ochoa, M.A., Arizpe-Chávez, H., Ramírez-Bon, R. et al. Current–Voltage Characterization of Transparent ITO/ZnO:B/ZnO:(Al + In)/Ag Schottky Diodes Prepared with Multilayer Films by Sol–Gel Deposition. J. Electron. Mater. 49, 1993–2002 (2020). https://doi.org/10.1007/s11664-019-07880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07880-6

Keywords

Navigation