Skip to main content
Log in

One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Cyclodextrin-based nanosponges (CDNS) are a novel kind of polymers belonged to cross-linked derivatives of cyclodextrins, and they are safe, biodegradable materials with appreciable toxicity to the environment. In this work, CDNS were fabricated in one-step solvothermal method by β-cyclodextrin (β-CD) and diphenyl carbonate (DPC), for the removal of dyestuffs from wastewater using two of the familiar dyes as the model contaminant. It was systematically investigated by the influence of the amount of adsorbent, the molar ratio of β-CD and DPC, pH, time, and initial concentration. Experimental results showed the maximum adsorption capacities of Basic red 46 and Rhodamine B were 101.43 mg/g and 52.33 mg/g, the adsorption behavior of two contaminants followed pseudo-second-order model and the Langmuir monolayer adsorption models. The differences in adsorption capacities on two model contaminants might due to the influence of dye structure. In conclusion, cyclodextrin-based nanosponges are a promising kind of environment-friendly materials in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Ali, Water Air Soil Pollut. 213, 1 (2010)

    Google Scholar 

  2. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 3 (2001)

    Google Scholar 

  3. S. Chen, M. Cai, X. Ma, J. Alloys Compd. 689, 36 (2016)

    CAS  Google Scholar 

  4. V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, J. Ind. Eng. Chem. 21, 957 (2015)

    CAS  Google Scholar 

  5. H.S. Lin, M.C. Lin, Water Res. 27, 12 (1993)

    Google Scholar 

  6. S.A. Mirbagheri, A. Charkhestani, Desalin. Water Treat. 57, 20 (2016)

    Google Scholar 

  7. J. Shah, M.R. Jan, F. Khitab, Process Saf. Environ. 116, 149 (2018)

    CAS  Google Scholar 

  8. Z. Karim, A.P. Mathew, M. Grahn, J. Mouzon, K. Oksman, Carbohydr. Polym. 112, 668 (2014)

    CAS  PubMed  Google Scholar 

  9. X. Liang, Y. Lu, Z. Li, C. Yang, C. Niu, X. Su, Microporous Mesoporous Mater. 241, 107 (2017)

    CAS  Google Scholar 

  10. E. Errais, J. Duplay, F. Darragi, I. M’Rabet, A. Aubert, F. Huber, G. Morvan, Desalination 275, 1 (2011)

    Google Scholar 

  11. L. Fan, Y. Zhang, C. Luo, F. Lu, H. Qiu, M. Sun, Biol. Macromol. 50, 2 (2012)

    Google Scholar 

  12. R.A. Osmani, P. Kulkarni, S. Manjunatha, V. Gowda, U. Hani, R. Vaghela, R. Bhosale, Cyclodextrin nanosponges in drug delivery and nanotherapeutics. (2018). https://doi.org/10.1007/978-3-319-76090-2_9

    Google Scholar 

  13. L. Guo, G. Ge, X. Liu, F. Liu, Mater. Chem. Phys. 111, 2 (2008)

    Google Scholar 

  14. S. Borini, S. D’Auria, M. Rossi, A.M. Rossi, Lab Chip 5, 10 (2005)

    Google Scholar 

  15. V. Davankov, M.M. Ilyin, M.P. Tsyurupa, G.I. Timofeeva, L.V. Dubrovina, Macromolecules 29, 26 (1996)

    Google Scholar 

  16. H. Bricout, F. Hapiot, A. Ponchel, S. Tilloy, E. Monflier, Sustainability 1, 4 (2009)

    Google Scholar 

  17. R. Cavalli, F. Trotta, W. Tumiatti, J. Incl. Phenom. Macrocycl. 56, 1 (2006)

    Google Scholar 

  18. L. Seglie, K. Martina, M. Devecchi, C. Roggero, F. Trotta, V. Scariot, Postharvest Biol. Technol. 59, 2 (2010)

    Google Scholar 

  19. S. Sadjadi, M.M. Heravi, M. Daraie, Res. Chem. Intermed. 43, 2 (2017)

    Google Scholar 

  20. A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Atarod, J. Alloys Compd. 689, 15 (2016)

    CAS  Google Scholar 

  21. Y. Tingting, X. Zhimin, Z. Xinhui, C. Wenjun, M. Tiancheng, New J. Chem. 42, 16154 (2018)

    Google Scholar 

  22. J.L. Atwood, J.-M. Lehn, Cryst. Eng. 6, 3 (1996)

    Google Scholar 

  23. A.E.H.P. D. Chirality 19, 2 (2007)

  24. N. Morin-Crini, G. Crini, Prog. Polym. Sci. 38, 2 (2013)

    Google Scholar 

  25. K.A. Ansari, S.J. Torne, P.R. Vavia, F. Trotta, R. Cavalli. Curr. Drug Deliv. 8, 194 (2011)

    CAS  PubMed  Google Scholar 

  26. Z. Yanbo, L. Jian, Z. Yi, L. Yongdi. Environ. Pollut. (Barking, Essex: 1987) 252, Pt A (2019)

  27. R. Zhang, Y. Zhou, X. Gu, J. Lu, Clean Soil Air Water 43, 1 (2014)

    Google Scholar 

  28. R. Pushpalatha, S. Selvamuthukumar, D. Kilimozhi, J. Drug Deliv. Sci. Technol. 45, 45 (2018)

    CAS  Google Scholar 

  29. Z. Feiping, R. Eveliina, Y. Dulin, M. Yong, J. Shila, S. Mika, Environ. Sci. Technol. 49, 17 (2015)

    Google Scholar 

  30. A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Nature 529, 190 (2016)

    CAS  PubMed  Google Scholar 

  31. H. Amjad, S. Miklas, Environ. Sci. Pollut. Res. 25, 7 (2018)

    Google Scholar 

  32. C. Yang, S. Wu, J. Cheng, Y. Chen, J. Alloys Compd. 687, 804 (2016)

    CAS  Google Scholar 

  33. V. Singh, T. Guo, L. Wu, J. Xu, B. Liu, R. Gref, J. Zhang, RSC Adv. 34, 7 (2017)

    Google Scholar 

  34. F. Trotta, V. Tumiatti, R. Cavalli, C. Roggero, B. Mognetti, G. Berta, WO 3656, A1 (2009)

    Google Scholar 

  35. A.R. Kiasat, S. Nazari, J. Mol. Catal. A Chem. 365, 80 (2012)

    CAS  Google Scholar 

  36. X. He, Z. Wu, Z. Sun, X. Wei, Z. Wu, X. Ge, G. Cravotto, J. Mol. Liq. 255, 160 (2018)

    CAS  Google Scholar 

  37. C. Qi, H. Liu, S. Deng, A.H. Yang, Z. Li, Res. Chem. Intermed. 44, 4 (2018)

    Google Scholar 

  38. R. Mirzajani, N. Pourreza, S.S.A. Najjar, Res. Chem. Intermed. 40, 8 (2014)

    Google Scholar 

  39. Y. He, Z. Xu, F. Wu, Q. Yang, J. Zhang, J. Chem. Technol. Biotechnol. 90, 2257 (2014)

    Google Scholar 

  40. P.L. Meo, G. Lazzara, L. Liotta, S. Riela, R. Noto, Polym Chem. 5, 15 (2014)

    Google Scholar 

  41. S. Çoruh, E.H. Gürkan, Environ. Prog. Sustain. 33, 4 (2014)

    Google Scholar 

  42. C. Demirbilek, C.Ö. Dinç, Desalin. Water Treat. 57, 15 (2016)

    Google Scholar 

  43. P.K. Shende, F. Trotta, R.S. Gaud, K. Deshmukh, R. Cavalli, M. Biasizzo, J. Polym. Environ. 74, 1 (2012)

    Google Scholar 

  44. S. Shankar, P. Linda, S. Loredana, T. Francesco, V. Pradeep, A. Dino, T. Michele, Z. Gianpaolo, C. Roberta, Eur. J. Pharm. Biopharm. 74, 2 (2009)

    Google Scholar 

  45. F. Deniz, S. Karaman, Chem. Eng. J. 170, 1 (2011)

    Google Scholar 

  46. A. Lunhong, Z. Chunying, C. Zhonglan, J. Hazard. Mater. 192, 2 (2016)

    Google Scholar 

  47. X. Li, X.-J. Nie, Y.-N. Zhu, W.-C. Ye, Y.-L. Jiang, S.-L. Su, B.-T. Yan, Colloid Surf. A 578, 123582 (2019)

  48. Y. Bulut, H. Aydın, Desalination 194, 1 (2005)

    Google Scholar 

  49. A. Lunhong, Z. Chunying, C. Zhonglan, J. Hazard. Mater. 192, 3 (2011)

    Google Scholar 

  50. M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour, J. Chem. Eng. Data 55, 12 (2010)

    Google Scholar 

  51. A.Z.M. Badruddoza, G.S.S. Hazel, K. Hidajat, M.S. Uddin, Colloid Surf. A 367, 1 (2010)

    Google Scholar 

  52. L. Yaoyue, Z. Yanbo, Z. Yi, L. Juying, P. Shengyan, Water Sci. Technol. 78, 12 (2018)

    Google Scholar 

  53. S.H. Mousavi, A. Mohammadi, Process Saf. Environ. 114, 1 (2018)

    CAS  Google Scholar 

  54. L. Qiming, L. Yaoyue, C. Huafeng, L. Jian, Y. Guangsuo, M. Maxim, Z. Yanbo, J. Hazard. Mater. 382, 121040 (2020)

    Google Scholar 

  55. Y. Wang, L. Zhao, J. Hou, H. Peng, Water Sci. Technol. 77, 2699 (2018)

    CAS  PubMed  Google Scholar 

  56. F. Deniz, S.D. Saygideger, Desalination 262, 1 (2010)

    Google Scholar 

  57. L. Laila, E.M. Khalid, C. Omar, Environ. Sci. Pollut. Res. 14, 4 (2007)

    Google Scholar 

  58. F. Deniz, S.D. Saygideger, Desalination 268, 1 (2010)

    Google Scholar 

  59. A.B. Karim, B. Mounir, M. Hachkar, M. Bakasse, A. Yaacoubi, J. Hazard. Mater. 168, 1 (2009)

    Google Scholar 

  60. T.A. Khan, S. Dahiya, I. Ali, Appl. Clay Sci. 69, 58 (2012)

    CAS  Google Scholar 

  61. S.M. Al-Rashed, A.A. Al-Gaid, J Saudi Chem Soc. 16, 2 (2012)

    Google Scholar 

  62. S.H. Chang, K.S. Wang, H.C. Li, M.Y. Wey, J.D. Chou, J. Hazard. Mater. 172, 2 (2009)

    Google Scholar 

  63. J.H. Huang, K.L. Huang, S.-Q. Liu, A.-T. Wang, C. Yan, Colloid Surf. A 330, 55 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the financial support of this work by National Natural Science Foundation of China (No. 11375084) and Nature Science Foundation of Hunan (No. 2017JJ4046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, H., Li, W. et al. One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions. Res Chem Intermed 46, 1715–1734 (2020). https://doi.org/10.1007/s11164-019-04059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04059-w

Keywords

Navigation