Skip to main content
Log in

Theoretical study on the M-H···π interactions between metal hydrides and inorganic benzene B3X3H3(X = O, S, Se)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, we conducted ab initio calculations to evaluate the properties of M-H···π interactions between the metal hydrides MH (M = Li, Na, MgH, CaH, NiH, CuH, ZnH) and inorganic benzenes B3X3H3 (X = O, S, Se). Unlike benzene, inorganic benzene B3X3H3 (X = O, S, Se) supports a large area of positive molecular electrostatic potential above and below the molecule, which acts as a Lewis acid and interacts with the H atom of metal hydride. MP2/6–311++G(d, p) results show that these intermolecular interactions exhibit the characteristics of close shell noncovalent interactions. The electrostatic interaction significantly contributes to stabilizing the complexes. The M-H···π interaction’s strength is associated with the property of group VI atom and metal hydride. X’s atomic number decreasing and the H of MH becoming more negative facilitate stronger interaction. Furthermore, the addition of substituent on the B3O3Y3 (Y = F, Cl, CN, OH, and CH3) significantly impacts the π-hole of inorganic benzene and thus modulates these M-H···π interactions. More elongation and blueshift of the MH bonds upon complexation were found for electron-withdrawing substituents. Analysis of σ and π orbital separation indicates that the π-attractor’s position relative to the B atom in the inorganic benzene changes with different substituents. The M-H···π interaction’s strength is primarily dependent on the π-electron density, not σ-electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    PubMed  Google Scholar 

  2. Dannenberg JJ (2010) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. J Am Chem Soc 132:3229–3229

    CAS  Google Scholar 

  3. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    CAS  PubMed  Google Scholar 

  4. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Legon AC (2017) Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: a systematic look at non-covalent interactions. Phys Chem Chem Phys 19:14884–14896

    CAS  PubMed  Google Scholar 

  6. Janiak C (2000) A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton trans., 3885-3896

  7. Riley KE, Hobza P (2013) On the importance and origin of aromatic interactions in chemistry and biodisciplines. Acc Chem Res 46:927–936

    CAS  PubMed  Google Scholar 

  8. Ran J, Hobza P (2009) On the nature of bonding in lone pair···π-electron complexes: CCSD(T)/complete basis set limit calculations. J Chem Theory Comput 5:1180–1185

    CAS  PubMed  Google Scholar 

  9. Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-pi interactions. Chem Soc Rev 37:68–83

    CAS  PubMed  Google Scholar 

  10. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    CAS  Google Scholar 

  11. Nepal B, Scheiner S (2014) Effect of ionic charge on the CH···π hydrogen bond. J Phys Chem A 118:9575–9587

    CAS  PubMed  Google Scholar 

  12. Dougherty DA (2013) The cation−π interaction. Acc Chem Res 46:885–893

    CAS  PubMed  Google Scholar 

  13. Motherwell WB, Moreno RB, Pavlakos I, Arendorf JRT, Arif T, Tizzard GJ, Coles SJ, Aliev AE (2018) Noncovalent interactions of π systems with sulfur: the atomic chameleon of molecular recognition. Angew Chem 130:1207–1212

    Google Scholar 

  14. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) Origin of the attraction and directionality of the NH/π interaction: comparison with OH/π and CH/π interactions. J Am Chem Soc 122:11450–11458

    CAS  Google Scholar 

  15. Tsuzuki S, Fujii A (2008) Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Phys Chem Chem Phys 10:2584–2594

    CAS  PubMed  Google Scholar 

  16. Karthikeyan S, Ramanathan V, Mishra BK (2013) Influence of the substituents on the CH...π interaction: benzene–methane complex. J Phys Chem A 117:6687–6694

    CAS  PubMed  Google Scholar 

  17. Mishra BK, Deshmukh MM, Venkatnarayan R (2014) C–H···π interactions and the nature of the donor carbon atom. J Org Chem 79:8599–8606

    CAS  PubMed  Google Scholar 

  18. Wheeler SE, Bloom JWG (2014) Toward a more complete understanding of noncovalent interactions involving aromatic rings. J Phys Chem A 118:6133–6147

    CAS  PubMed  Google Scholar 

  19. Fanfrlík J, Pecina A, Řezáč J, Sedlak R, Hnyk D, Lepšík HP (2017) B–H···π: a nonclassical hydrogen bond or dispersion contact? Phys Chem Chem Phys 19:18194–18200

    PubMed  Google Scholar 

  20. Al-Kukhun A, Hwang HT, Varma A (2011) A comparison of ammonia borane dehydrogenation methods for proton-exchange-membrane fuel cell vehicles: hydrogen yield and ammonia formation and its removal. Ind Eng Chem Res 50:8824–8835

    CAS  Google Scholar 

  21. Jackson KT, Rabbani MG, Reich TE, El-Kaderi HM (2011) Synthesis of highly porous borazine-linked polymers and their application to H2, CO2, and CH4 storage. Polym Chem 2:2775–2777

    CAS  Google Scholar 

  22. Korich AL, Iovine PM (2010) Boroxine chemistry and applications: a perspective. Dalton Trans 39:1423–1431

    CAS  PubMed  Google Scholar 

  23. Yang Y, Inoue T, Fujinami T, Mehta MA (2002) Ionic conductivity and interfacial properties of polymer electrolytes based on PEO and boroxine ring polymer. J Appl Polym Sci 84:17–21

    CAS  Google Scholar 

  24. Sham IHT, Kwok C-C, Che C-M, Zhu N (2005) Borazine materials for organic optoelectronic applications. Chem Commun 3547-3549

  25. Bonifazi D, Fasano F, Lorenzo-Garcia MM, Marinelli D, Oubaha H, Tasseroul J (2015) Boron–nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chem Commun 51:15222–15236

    CAS  Google Scholar 

  26. Jemmis ED, Kiran B (1998) Aromaticity in X3Y3H6 (X = B, Al, Ga; Y = N, P, as), X3Z3H3 (Z = O, S, se), and phosphazenes. Theoretical study of the structures, energetics, and magnetic properties. Inorg Chem 37:2110–2116

    CAS  PubMed  Google Scholar 

  27. Engelberts JJ, Havenith RWA, van Lenthe JH, Jenneskens LW, Fowler PW (2005) The electronic structure of inorganic benzenes: valence bond and ring-current descriptions. Inorg Chem 44:5266–5272

    CAS  PubMed  Google Scholar 

  28. Pierrefixe SCAH, Bickelhaupt FM (2008) Aromaticity in heterocyclic and inorganic benzene analogues. Aust J Chem 61:209–215

    CAS  Google Scholar 

  29. Li DZ, Zhang SG, Liu J, Tang C (2014) Vanadium sandwich complexes with Boroxine and boronyl boroxine ligands. Eur J Inorg Chem 2014:3406–3410

    CAS  Google Scholar 

  30. Wu WJ, Li XY, Meng LP, Zheng SK, Zeng YL (2015) Understanding the properties of inorganic benzenes based on π-electron densities. J Phys Chem A 119:2091–2097

    CAS  PubMed  Google Scholar 

  31. Khanh PN, Ngan VT, Hong Man NT, Ai Nhung NT, Chandra AK, Trung NT (2016) An insight into Csp–H⋯π hydrogen bonds and stability of complexes formed by acetylene and its substituted derivatives with benzene and borazine. RSC Adv 6:106662–106670

    CAS  Google Scholar 

  32. Su B, Ota K, Xu K, Hirao H, Kinjo R (2018) Zwitterionic inorganic benzene valence isomer with σ-bonding between two π-orbitals. J Am Chem Soc 140:11921–11925

    CAS  PubMed  Google Scholar 

  33. Parker SF (2018) Complete assignment of the vibrational spectra of borazine: the inorganic benzene. RSC Adv 8:23875–23880

    CAS  Google Scholar 

  34. Ghiasi R (2012) Molecular interaction of H2 and H2O with borthiin: a theoretical study. Russ Chem Bull 61:248–252

    CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford

  36. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol Phys 19:553–566

    CAS  Google Scholar 

  37. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  PubMed  Google Scholar 

  38. F. Biegler-König, J. Schönbohm, AIM2000, Version 2.0

  39. Azami SM (2010) Electron density based characterization of π bonds in planar molecules. J Phys Chem A 114:11794–11797

    CAS  PubMed  Google Scholar 

  40. Zheng SJ, Cai XH, Meng LP (1995) General topological analysis program. QCPE Bull 15:25–25

    Google Scholar 

  41. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  43. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18(2):541–548

    CAS  PubMed  Google Scholar 

  44. Politzer P, Murray JS (2017) σ-Holes and π-holes: similarities and differences. J Comput Chem 39(9):464–471

    PubMed  Google Scholar 

  45. Zeng YL, Zhu M, Meng LP, Zheng SJ (2011) The role of π electrons in the formation of benzene-containing Lithium-bonded complexes. ChemPhysChem. 12:3584–3590

    CAS  PubMed  Google Scholar 

  46. Shen SJ, Zeng YL, Li XY, Meng LP, Zhang XY (2018) Insight into the π-hole···π-electrons tetrel bonds between F2ZO (Z = C, Si, Ge) and unsaturated hydrocarbons. Int J Quantum Chem 118:e25521

    Google Scholar 

  47. Li QZ, Zhuo HY, Li HB, Liu ZB, Li WZ (2015) Tetrel–hydride interaction between XH3F (X = C, Si, Ge, Sn) and HM (M = Li, Na, BeH, MgH). J Phys Chem A 119:2217–2224

    CAS  PubMed  Google Scholar 

  48. Feng Y, Liu L, Wang JT, Li XS, Guo QX (2004) Blue-shifted lithium bonds. Chem Commun 88-89

  49. Solimannejad M, Scheiner S (2005).Theoretical investigation of the weakly dihydrogen bonded complexes FArCCH…HBeX (X = H, F, Cl, Br). J Phys Chem A 109:6137–6139

  50. Li QZ, Wang YF, Li WZ, Cheng JB, Gong BA, Sun JZ (2009) Predication and characterization of the HMgH…LiX (X = H, OH, F, CCH, CN, and NC) complexes: a lithium-hydride lithium bond. Phys Chem Chem Phys 11:2402–2407

    CAS  PubMed  Google Scholar 

  51. McDowell SAC, Marcellin RC (2010). A comparative computational study of hydrogen and lithium-bonded complexes. J Chem Phys 133:144307

  52. Stone AJ (2017) Natural bond orbitals and the nature of the hydrogen bond. J Phys Chem A 121:1531–1534

    CAS  PubMed  Google Scholar 

  53. Clark T, Murray JS, Politzer P (2018) A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys Chem Chem Phys 20:30076–30082

    CAS  PubMed  Google Scholar 

  54. Brinck T, Borrfors AN (2019) Electrostatics and polarization determine the strength of the halogen bond: a red card for charge transfer. J Mol Model 25:125

    PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge TopEdit LLC for the linguistic editing and proofreading during the preparation of this manuscript.

Funding

This work was supported by the Natural Science Foundation of Hebei Province (Contract Nos. B2018205198, B2019205113) and the Foundation of Hebei Normal University (Contract No. L2018Z04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Sun, M., Li, X. et al. Theoretical study on the M-H···π interactions between metal hydrides and inorganic benzene B3X3H3(X = O, S, Se). Struct Chem 31, 937–946 (2020). https://doi.org/10.1007/s11224-019-01474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01474-y

Keywords

Navigation