Skip to main content
Log in

Strip-shaped Co3O4 as a peroxidase mimic in a signal-amplified impedimetric zearalenone immunoassay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An impedimetric immunoassay was designed for ultrasensitive determination of zearalenone (ZEN). It is making use of the peroxidase-like activity of strip-shaped Co3O4 (ssCo3O4) which catalyzes the oxidation of 4-chloro-1-naphthol to produce an insoluble precipitate in the presence of H2O2. The precipitate is electrically nonconductive and accumulates on the electrode, thereby retarding the electron transfer from the redox probe ferro/ferricyanide to the surface of electrode. This amplifies the impedimetric signal in accordance with logarithm of the concentration of ZEN. The electrode was further modified with TiO2 mesocrystals (TiO2 MCs) which improve the capture of more analytes and increase the performance of the immunoassay. Under optimized experimental condition, the impedimetric signal increased linearly with the logarithm of the ZEN concentration range between 0.1 fg·mL−1 to 10 pg·mL−1. The detection limit is of 33 ag· mL−1.

This work describes an impedimetric immunoassay based on the use of strip-shaped Co3O4 that catalyzes the production of an insoluble precipitate in the presence of H2O2 on the surface of a glassy carbon electrode. The effect was used for signal amplification in an electrochemical immunoassay for zearalenone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang F, Liu B, Sheng W, Zhang Y, Liu Q, Li S, Wang S (2018) Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem 255:421–428

    Article  CAS  Google Scholar 

  2. Rykaczewska A, Gajęcka M, Dąbrowski M, Wiśniewska A, Szcześniewska J, Gajęcki MT, Zielonka Ł (2018) Growth performance, selected blood biochemical parameters and body weights of pre-pubertal gilts fed diets supplemented with different doses of zearalenone (ZEN). Toxicon 152:84–94

    Article  CAS  Google Scholar 

  3. Niazi S, Wang X, Pasha I, Khan IM, Zhao S, Shoaib M, Wu S, Wang Z (2018) A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF4: Ce/Tb nanoparticles as signal probe. Talanta 186:97–103

    Article  CAS  Google Scholar 

  4. Niazi S, Khan IM, Yu Y, Pasha I, Shoaib M, Mohsin A, Mushtaq BS, Akhtar W, Wang Z (2019) A “turnon” aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B1 using WS2 as a quencher. Microchim Acta 186:575

    Article  Google Scholar 

  5. Barbera G, Capriotti A, Cavaliere C, Foglia P, Montone C, Chiozzi R, Laganà A (2017) A rapid magnetic solid phase extraction method followed by liquid chromatography-tandem mass spectrometry analysis for the determination of Mycotoxins in cereals. Toxins 9:147

    Article  Google Scholar 

  6. Zhang Z, Hu X, Zhang Q, Li P (2016) Determination for multiple mycotoxins in agricultural products using HPLC–MS/MS via a multiple antibody immunoaffinity column. J Chromatogr B 1021:145–152

    Article  CAS  Google Scholar 

  7. Wang Y-K, Yan Y-X, Mao Z-W, Wang H-a, Zou Q, Hao Q-W, Ji W-H, Sun J-H (2012) Highly sensitive electrochemical immunoassay for zearalenone in grain and grain-based food. Microchim Acta 180:187–193

    Article  Google Scholar 

  8. Xu L, Liu Z, Lei S, Huang D, Zou L, Ye B (2019) A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Microchim Acta 186:473

    Article  Google Scholar 

  9. He B, Yan X (2019) An amperometric zearalenone aptasensor based on signal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Microchim Acta 186:383

    Article  Google Scholar 

  10. Kim JS, Jang JY, Cheon HJ, Cho S, Jang IS, Yu BJ, Kim MI (2019) Co3O4/Au hybrid nanostructures as efficient peroxidase mimics for colorimetric biosensing. J Nanosci Nanotechnol 19:6696–6702

    Article  CAS  Google Scholar 

  11. Jing A, Liang G, Shi H, Yuan Y, Zhan Q, Feng W (2019) Three-dimensional holey-graphene architectures for highly sensitive enzymatic electrochemical determination of hydrogen peroxide. J Nanosci Nanotechnol 19:7404–7409

    Article  CAS  Google Scholar 

  12. Afzali D, Fathirad F (2016) Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Microchim Acta 183:2633–2638

    Article  CAS  Google Scholar 

  13. Gong L, Dai H, Zhang S, Lin Y (2016) Silver iodide-chitosan Nanotag induced biocatalytic precipitation for self-enhanced ultrasensitive Photocathodic Immunosensor. Anal Chem 88:5775–5782

    Article  CAS  Google Scholar 

  14. Hou L, Cui Y, Xu M, Gao Z, Huang J, Tang D (2013) Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens Bioelectron 47:149–156

    Article  CAS  Google Scholar 

  15. Qiu Z, Tang D, Shu J, Chen G, Tang D (2016) Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg(II) with sensitivity enhancement. Biosens Bioelectron 75:108–115

    Article  CAS  Google Scholar 

  16. Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y (2017) Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens Bioelectron 100:28–34

    Article  Google Scholar 

  17. Zhang N, Ruan Y-F, Ma Z-Y, Zhao W-W, Xu J-J, Chen H-Y (2016) Simultaneous photoelectrochemical and visualized immunoassay of β-human chorionic gonadotrophin. Biosens Bioelectron 85:294–299

    Article  CAS  Google Scholar 

  18. Yang R, Zou K, Li Y, Meng L, Zhang X, Chen J (2018) Co3O4–Au Polyhedra: a multifunctional signal amplifier for sensitive photoelectrochemical assay. Anal Chem 90:9480–9486

    Article  CAS  Google Scholar 

  19. Khataee A, Haddad Irani-nezhad M, Hassanzadeh J, Woo Joo S (2018) Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: colorimetric, fluorometric and electrochemical studies. J Colloid Interface Sci 515:39–49

    Article  CAS  Google Scholar 

  20. Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438

    Article  CAS  Google Scholar 

  21. Lin Y, Ren J, Qu X (2014) Nano-gold as artificial enzymes: hidden talents. Adv Mater 26:4200–4217

    Article  CAS  Google Scholar 

  22. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder HC, Müller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509

    Article  Google Scholar 

  23. Zhao R, Zhao X, Gao X (2015) Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem Eur J 21:960–964

    Article  CAS  Google Scholar 

  24. Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540–2542

    Article  CAS  Google Scholar 

  25. Hong Z, Hong J, Xie C, Huang Z, Wei M (2016) Hierarchical rutile TiO2 with mesocrystalline structure for Li-ion and Na-ion storage. Electrochim Acta 202:203–208

    Article  CAS  Google Scholar 

  26. Dai H, Zhang S, Gong L, Li Y, Xu G, Lin Y, Hong Z (2015) The photoelectrochemical exploration of multifunctional TiO2 mesocrystals and its enzyme-assisted biosensing application. Biosens Bioelectron 72:18–24

    Article  CAS  Google Scholar 

  27. Kleitz F, Hei Choi S, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 17:2136–2137

    Article  Google Scholar 

  28. Kandimalla VB, Tripathi VS, Ju H (2006) A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials 27:1167–1174

    Article  CAS  Google Scholar 

  29. Pascari X, Ortiz-Solá J, Marín S, Ramos AJ, Sanchis V (2018) Survey of mycotoxins in beer and exposure assessment through the consumption of commercially available beer in Lleida, Spain. Lwt 92:87–91

    Article  CAS  Google Scholar 

  30. Luo T, Ke J, Xie Y, Dong Y (2017) Determination of underivatized amino acids to evaluate quality of beer by capillary electrophoresis with online sweeping technique. J Food Drug Anal 25:789–797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the NSFC (21877012, 21575024), National Science Foundation of Fujian Province (2016 J06003, 2017 J01620) and Education Department of Fujian Province (JK2016009, FBJG20170186, JA14071) was also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Dai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiani Wang and Shupei Zhang contributed to the work equally and should be regarded as co-first author.

Electronic supplementary material

ESM 1

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, S., Dai, H. et al. Strip-shaped Co3O4 as a peroxidase mimic in a signal-amplified impedimetric zearalenone immunoassay. Microchim Acta 187, 75 (2020). https://doi.org/10.1007/s00604-019-4053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4053-x

Keywords

Navigation