Skip to main content
Log in

Ultrasound-assisted synthesis of chiral cysteine-capped CdSe quantum dots for fluorometric differentiation and quantitation of tryptophan enantiomers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A room temperature ultrasound-assisted method was applied to synthesize L- and D-cysteine-capped CdSe quantum dots (QDs). The QDs were characterized by XRD, FT-IR, and TEM. They have diameters of 5–7 nm and are shown to be viable probes for highly selective chiral recognition of tryptophan (Trp) enantiomers by fluorometry. The green fluorescence of the capped QDs (with excitation/emission maxima at 380/527 nm and 380/520 nm for L-Cys and D-Cys QDs, respectively) is differently quenched by D- and L-Trp in a high selective manner, with negligible interference by other species. The calibration plots and corresponding Stern-Volmer plots for both Trp enantiomers were investigated by two different approaches: In the first, each individual enantiomer was tested. In the second, each enantiomer was tested in the presence of a 100-folds excess of the other enantiomer. The detection limits for the recognition of L- and D-Trp are 4.2 and 4.7 nM, respectively, for the first approach. In the presence of the other enantiomer, the LODs are 4.4 and 4.8 nM. The linear range extends from 0.1 to 15 μM for both enantiomers.

Schematic representation of tryptophan (Trp) chiral recognition process. The fluorescence (green, ON) of D- and L-Cys (cysteine)-capped CdSe QDs is quenched (black, OFF) through a preferential and selective interaction with L- and D-Trp, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  Google Scholar 

  2. Wang Y, Chen L (2011) Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine Nanotechnology, Biol Med 7:385–402. https://doi.org/10.1016/J.NANO.2010.12.006

    Article  CAS  Google Scholar 

  3. Zhao M, Chen Y, Han R, Luo D, du L, Zheng Q, Wang L, Hong Y, Liu Y, Sha Y (2018) A facile synthesis of biocompatible, glycol chitosan shelled CdSeS/ZnS QDs for live cell imaging. Colloids Surfaces B Biointerfaces 172:752–759. https://doi.org/10.1016/J.COLSURFB.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VL, Barbosa JA, Prior JA, Marques KL, Santos JL (2012) Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 735:9–22. https://doi.org/10.1016/J.ACA.2012.04.042

    Article  CAS  PubMed  Google Scholar 

  5. Liu Q, Jiang M, Ju Z, Qiao X, Xu Z (2018) Development of direct competitive biomimetic immunosorbent assay based on quantum dot label for determination of trichlorfon residues in vegetables. Food Chem 250:134–139. https://doi.org/10.1016/J.FOODCHEM.2017.12.079

    Article  CAS  PubMed  Google Scholar 

  6. Moloney MP, Govan J, Loudon A et al (2015) Preparation of chiral quantum dots. Nat Protoc 10:558

    Article  CAS  Google Scholar 

  7. Carrillo-Carrión C, Cárdenas S, Simonet BM, Valcarcel M (2009) Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe (ZnS) quantum dots. Anal Chem 81:4730–4733

    Article  Google Scholar 

  8. Horikoshi S, Serpone N (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. John Wiley & Sons

  9. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Article  CAS  Google Scholar 

  10. Xiong H, Shchukin DG, Möhwald H et al (2009) Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chemie Int Ed 48:2727–2731

    Article  CAS  Google Scholar 

  11. Chen D, Sharma SK, Mudhoo A (2011) Handbook on applications of ultrasound: sonochemistry for sustainability. CRC press

  12. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78:2093–2099

    Article  Google Scholar 

  13. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856. https://doi.org/10.1016/J.CHROMA.2009.10.022

    Article  PubMed  Google Scholar 

  14. Wypchlo K, Duddeck H (1994) Chiral recognition of olefins by 1H NMR spectroscopy in the presence of a chiral dirhodium complex. Tetrahedron Asymmetry 5:27–30

    Article  CAS  Google Scholar 

  15. Kuhn R, Erni F, Bereuter T, Haeusler J (1992) Chiral recognition and enantiomeric resolution based on host-guest complexation with crown ethers in capillary zone electrophoresis. Anal Chem 64:2815–2820. https://doi.org/10.1021/ac00046a026

    Article  CAS  Google Scholar 

  16. Thompson AL, Watkin DJ (2009) X-ray crystallography and chirality: understanding the limitations. Tetrahedron Asymmetry 20:712–717. https://doi.org/10.1016/J.TETASY.2009.02.025

    Article  CAS  Google Scholar 

  17. Song G, Xu C, Li B (2015) Visual chiral recognition of mandelic acid enantiomers with l-tartaric acid-capped gold nanoparticles as colorimetric probes. Sensors Actuators B Chem 215:504–509. https://doi.org/10.1016/j.snb.2015.03.109

    Article  CAS  Google Scholar 

  18. Wei J, Guo Y, Li J, Yuan M, Long T, Liu Z (2017) Optically active ultrafine au–Ag alloy nanoparticles used for colorimetric chiral recognition and circular Dichroism sensing of enantiomers. Anal Chem 89:9781–9787. https://doi.org/10.1021/acs.analchem.7b01723

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Zeng X, Yuan H et al (2017) Chiral recognition of phenylglycinol enantiomers based on N-acetyl-l-cysteine capped CdTe quantum dots in the presence of Ag+. Spectrochim Acta Part A Mol Biomol Spectrosc 183:23–29. https://doi.org/10.1016/j.saa.2017.04.014

    Article  CAS  Google Scholar 

  20. Durán GM, Abellán C, Contento AM, Ríos Á (2017) Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots. Microchim Acta 184:815–824. https://doi.org/10.1007/s00604-017-2074-x

    Article  CAS  Google Scholar 

  21. Freeman R, Finder T, Bahshi L, Willner I (2009) β-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and Chiroselective analysis. Nano Lett 9:2073–2076. https://doi.org/10.1021/nl900470p

    Article  CAS  PubMed  Google Scholar 

  22. Serretti A, Zanardi R, Rossini D et al (2001) Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 6:586

    Article  CAS  Google Scholar 

  23. Malviya N, Sonkar C, Ganguly R, Mukhopadhyay S (2019) Cobalt Metallogel Interface for selectively sensing l-tryptophan among essential amino acids. Inorg Chem 58:7324–7334

    Article  CAS  Google Scholar 

  24. Parmeggiani F, Rué Casamajo A, Walton CJW et al (2019) One-pot biocatalytic synthesis of substituted d-Tryptophans from Indoles enabled by an engineered aminotransferase. ACS Catal 9:3482–3486

    Article  CAS  Google Scholar 

  25. Hudson C, Hudson S, MacKenzie J (2007) Protein-source tryptophan as an efficacious treatment for social anxiety disorder: a pilot studyThis article is one of a selection of papers published in this special issue (part 1 of 2) on the safety and efficacy of natural health products. Can J Physiol Pharmacol 85:928–932. https://doi.org/10.1139/Y07-082

    Article  CAS  PubMed  Google Scholar 

  26. Fadda F (2000) Tryptophan-free diets: a physiological tool to study brain serotonin function. Physiology 15:260–264

    Article  CAS  Google Scholar 

  27. Zhang L, Xu C, Liu C, Li B (2014) Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal Chim Acta 809:123–127. https://doi.org/10.1016/J.ACA.2013.11.043

    Article  CAS  PubMed  Google Scholar 

  28. Wei Y, Li H, Hao H et al (2015) β-Cyclodextrin functionalized Mn-doped ZnS quantum dots for the chiral sensing of tryptophan enantiomers. Polym Chem 6:591–598. https://doi.org/10.1039/C4PY00618F

    Article  CAS  Google Scholar 

  29. Xu J, Wang Q, Xuan C et al (2016) Chiral recognition of tryptophan enantiomers based on β-Cyclodextrin-platinum nanoparticles/Graphene Nanohybrids modified electrode. Electroanalysis 28:868–873. https://doi.org/10.1002/elan.201500548

    Article  CAS  Google Scholar 

  30. Lei P, Zhou Y, Zhang G, Zhang Y, Zhang C, Hong S, Yang Y, Dong C, Shuang S (2019) A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly. Talanta 195:306–312. https://doi.org/10.1016/J.TALANTA.2018.11.084

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Y, Cui L, Ke W et al (2019) Electroactive au@Ag nanoparticle assembly driven signal amplification for ultrasensitive chiral recognition of d−/l-Trp. ACS Sustain Chem Eng 7:5157–5166. https://doi.org/10.1021/acssuschemeng.8b06040

    Article  CAS  Google Scholar 

  32. Askari F, Rahdar A, Trant JF (2019) L-tryptophan adsorption differentially changes the optical behaviour of pseudo-enantiomeric cysteine-functionalized quantum dots: towards chiral fluorescent biosensors. Sens Bio-Sensing Res 22:100251. https://doi.org/10.1016/j.sbsr.2018.100251

    Article  Google Scholar 

  33. Menezes FD, Galembeck A, Junior SA (2011) New methodology for obtaining CdTe quantum dots by using ultrasound. Ultrason Sonochem 18:1008–1011

    Article  CAS  Google Scholar 

  34. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe Nanocrystals in growth. J Am Chem Soc 124:2049–2055. https://doi.org/10.1021/ja017002j

    Article  CAS  PubMed  Google Scholar 

  35. Duan J, Song L, Zhan J (2009) One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their hg 2+−sensitive properties. Nano Res 2:61–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Tashkhourian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, S., Tashkhourian, J. Ultrasound-assisted synthesis of chiral cysteine-capped CdSe quantum dots for fluorometric differentiation and quantitation of tryptophan enantiomers. Microchim Acta 187, 71 (2020). https://doi.org/10.1007/s00604-019-4046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4046-9

Keywords

Navigation