Skip to main content
Log in

Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report the characteristic properties of an organic light-emitting diode (OLED) using a rubrene buffer layer over the fluorine-doped tin oxide (FTO) surface. Our study includes both electrical and optical properties of the device. Here, we study the OLED devices at different thicknesses of the buffer layer, which varies from 3 to 11 nm. For device fabrication, we use a thermal evaporation unit. Finally, we report that device performance in a bilayer anode form is always higher than that of a single-FTO-based device. Maximum device efficiency is found to be \(6.31~\hbox {cd A}^{-1}\) around 8-nm thickness of rubrene layer over the FTO surface. We also study the stability of both the single-layer and double-layer anode OLED devices. Through this study, we found that both device efficiency and luminance intensity of the bilayer anode OLED remain more stable for more number of days compared with the single-FTO OLED device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parker I D 1994 J. Appl. Phys. 75 1656

    Article  CAS  Google Scholar 

  2. Lee H M, Choi K H, Hwang D H, Do L M, Zyung T, Lee J W et al 1998 Appl. Phys. Lett. 72 2382

    Article  CAS  Google Scholar 

  3. Ishii M, Mori T, Fujikawa H, Tokito S and Taga Y 2000 J. Lumin. 3 87

    Google Scholar 

  4. Sugiyama K, Ishii H, Ouchi Y and Seki K 2000 J. Appl. Phys. 87 295

    Article  CAS  Google Scholar 

  5. Rottmann M and Heckner K H 1995 J. Phys. D: Appl. Phys. 28 1448

    Article  CAS  Google Scholar 

  6. Cui J, Huang Q, Wang Q and Mark T J 2001 Langmuir 17 2051

    Article  CAS  Google Scholar 

  7. Van Slyke S A, Chen C H and Tang C W 1996 Appl. Phys. Lett. 69 2160

    Article  Google Scholar 

  8. Kim S Y, Baik J M, Yu H K and Lee J L 2005 J. Appl. Phys. 98 093707

    Article  Google Scholar 

  9. Di C A, Yu G, Liu Y Q, Xu X J, Song Y B and Zhu D B 2006 Appl. Phys. Lett. 89 033502

    Article  Google Scholar 

  10. Chan I M and Hong F C 2004 Thin Solid Films 450 304

    Article  CAS  Google Scholar 

  11. Jabbour G E, Kippelen B, Armstrong N R and Peyghambarian N 1998 Appl. Phys. Lett. 73 1185

    Article  CAS  Google Scholar 

  12. Huang L S, Tang C W and Mason M G 1997 Appl. Phys. Lett. 70 152

    Article  Google Scholar 

  13. Zhang S T, Zhou Y C, Zhou J M, Zhan Y Q and Wang Z J 2006 Appl. Phys. Lett. 89 043502

    Article  Google Scholar 

  14. Deng Z B, Ding X M, Lee S T and Gambling W A 1999 Appl. Phys. Lett. 74 2227

    Article  CAS  Google Scholar 

  15. Mu X, Xiao M W, Yu L H, Zhi Q J, Li Y S, Yue J S et al 2013 Chin. Phys. B 22 027805

    Article  Google Scholar 

  16. Zhang H M and Wallace C H 2008 IEEE Trans. Electron. Dev. 55 2517

    Article  CAS  Google Scholar 

  17. Jing L, Masayuki Y, Kenji I, Hirofumi Y and Kazumi M 2005 Synth. Met. 151 141

    Article  Google Scholar 

  18. Xie W F, Chuan N L and Shi-Yong L 2003 Chin. Phys. Lett. 20 956

    Article  Google Scholar 

  19. Liu T H, Iou C Y and Chen C H 2003 Appl. Phys. Lett. 83 5241

    Article  CAS  Google Scholar 

  20. Zhang Z L, Jiang X Y, Xu S H, Nagatomoz T and Omotoz O 1998 J. Phys. D: Appl. Phys. 31 32

    Article  CAS  Google Scholar 

  21. Merritt C D, Hideyuki M and Kafafi Z H 1999 Appl. Phys. Lett. 75 766

    Article  Google Scholar 

  22. Chang J, Hercules D M and Roe D K 1968 Electrochim. Acta 13 1197

    Article  CAS  Google Scholar 

  23. Cho J H, Kim D H, Jang Y, Lee W H, Ihm K, Han J H et al 2006 Appl. Phys. Lett. 89 132101

    Article  Google Scholar 

  24. Vineeth M 2012 Fabrication of OLED with ITO and FTO coated substrates P11287888

  25. Saikia D and Sarma R 2017 Pramana—J. Phys. 88 83

    Article  Google Scholar 

  26. Saikia D and Sarma R 2018 Indian J. Phys. 92 307

    Article  CAS  Google Scholar 

  27. Saikia D and Sarma R 2018 J. Electron. Mater. 47 737

    Article  CAS  Google Scholar 

  28. Saikia D and Sarma R 2018 Pramana—J. Phys. 91 65

    Article  Google Scholar 

  29. Schlatmann A R, Float D W, Hilbert A, Garten F, Smulders P J M and Klapwijk T M 1996 Appl. Phys. Lett. 69 1764

    Article  CAS  Google Scholar 

  30. Andersson A, Johansson N, Broms P, Donald Lupo N Y and Salaneck W R 1998 Adv. Mater. 10 859

    Article  CAS  Google Scholar 

  31. Deng Z B, Ding X M, Liao L S, Hou X Y and Lio S T 2000 Display 21 323

    Article  Google Scholar 

  32. Kim H H, Miller T M and Westerwick E H 1994 J. Lightwave Technol. 12 2107

    Article  CAS  Google Scholar 

  33. Kim H J, Lee J H, Kim J W, Lee S, Jang J, Lee H H et al 2013 J. Mater. Chem. C1 1260

    Article  CAS  Google Scholar 

  34. Aziz H, Popovic Z D, Hor A M, Hu N X and Xu G 1999 Science 283 1900

    Article  CAS  Google Scholar 

  35. Ke L, Chua J S, Zhang K R and Yakovlev N 2002 Appl. Phys. Lett. 80 2195

    Article  CAS  Google Scholar 

  36. Hwang D K, Kimoon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim, Hong Koo Baik et al 2006 Appl. Phys. Lett.88 243513

    Article  Google Scholar 

  37. Benvenho A R V, Serbena J P M, Lessmann R, Hümmelgen I A, Mello R M Q, Li R W C et al 2005 Braz. J. Phys. 35 1016

    Article  CAS  Google Scholar 

  38. Havare A K, Can M, Demic S, Kus M and Icli S 2012 Synth. Met.161 2734

  39. Zhi-Feng Z, Zhen-Bo D, Chun-Jun L, Meng-Xin Z and Deng-Hui X 2003 Displays 24 231

    Article  Google Scholar 

  40. Wang H, Wang L, Gao Y, Zhang D and Qiu Y 2004 Jpn. J. Appl. Phys. 43 1353

    Article  Google Scholar 

  41. Yang H, Xie W, Zhao Y, Hou J and Liu S 2007 Solid-State Electron. 51 111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrubajyoti Saikia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, D., Sarma, R. Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer. Bull Mater Sci 43, 35 (2020). https://doi.org/10.1007/s12034-019-2003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2003-1

Keywords

Navigation