Skip to main content
Log in

The Carboxylated Multi-walled Carbon Nanotubes/l-Asparaginase Doped Calcium-Alginate Beads: Structural and Biocatalytic Characterization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The calcium-alginate/multi-walled carbon nanotube hybrid beads (Ca-ALG/MWCNT-COOH) as a novel kind of matrix were fabricated and characterized in detailed. l-Asparaginase (l-ASNase), which is important chemotherapeutic enzyme-drug in leukemia, was immobilized on the Ca-ALG/MWCNT-COOH hybrid beads. To the best of our knowledge, this is the first study using Ca-ALG/MWCNT-COOH hybrid beads for l-ASNase immobilization. Our characterization investigations displayed that the hybridization between ALG and MWCNT-COOH caused significant changes on the surface morphology and structure. ALG of 0.5% (w/v), CaCl2 of 0.2 M concentration, enzyme of 187.5 U and bead size of 2 mm was found to be best with respect to enzyme loading efficiency. The enzyme was loaded a high yield (97.0%) on these hybrid beads. Remarkably, the tolerance of immobilized enzyme developed towards temperature and pH changes. The maximum activity for the free enzyme was observed at 35 °C, pH 7.5, whereas the immobilized enzyme showed maximum activity at 45 °C pH 8.5. After immobilization, storage stability of enzyme improved and retained more than 70% of its initial activity after 4 weeks at ~ 30 °C as compared with free enzyme which showed only 20% of residual activity. After immobilization, Km value decreased 1.27-fold compared to free counterpart, indicating increased the affinity between the substrate and enzyme. Moreover, immobilized enzyme maintained more than 36% of its original activity even after consecutive 14 reuse. As result, it is worthy of noting that this kind of hybrid materials may become a promising support material for the immobilization of commercial enzymes in areas such as industrial and medical.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Datta S, Christena LR, Rajaram YRS (2013) 3Biotech 3:1–9

    Google Scholar 

  2. Patel SKS, Choi SH, Kang YC, Lee JK (2016) Nanoscale 8:6728–6738

    CAS  PubMed  Google Scholar 

  3. Benítez-Mateos AI, Contente ML, Velasco-Lozano S, Paradisi F, López-Gallego F (2018) ACS Sustain Chem Eng 6:13151–13159

    Google Scholar 

  4. Raghu S, Pennathur G (2018) Turkish J Biol 42:307–318

    CAS  Google Scholar 

  5. Missau J, Scheid AJ, Foletto EL, Jahn SL, Mazutti MA, Kuhn RC (2014) Sustain Chem Process 2:13

    Google Scholar 

  6. Ai Q, Yang D, Zhu Y, Jiang Z (2013) Ind Eng Chem Res 52:14898–14905

    CAS  Google Scholar 

  7. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Miculescu M, Thakur VJ (2016) ACS Sustain Chem Eng. 4:1765–1774

    CAS  Google Scholar 

  8. Pandele AM, Neacsu P, Cimpean A, Staras AI, Miculescu F, Iordache A, Voicu SI, Thakur VJ, Toader OD (2018) Appl Surf Sci 438:2–13

    CAS  Google Scholar 

  9. Ates B, Ulu A, Köytepe S, Noma SAA, Kolat VS, Izgi T (2018) RSC Adv 8:36063–36075

    CAS  Google Scholar 

  10. Doǧaç YI, Çinar M, Teke M (2015) Prep Biochem Biotechnol 45:144–157

    PubMed  Google Scholar 

  11. Zhao F, Li H, Wang X, Wu L, Hou T, Guan J, Jiang Y, Xu H, Mu X (2015) J Mater Chem B 3:9315–9322

    CAS  PubMed  Google Scholar 

  12. Li J, Wu H, Liang Y, Jiang Z, Jiang Y, Zhang L (2013) J Biomater Sci Polym Ed 24:119–134

    CAS  PubMed  Google Scholar 

  13. Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S (2011) Mar Drugs 9:1664–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu JD, Tan HP, Li LH, Gao CY (2009) Chin Sci Bull 54:3174–3180

    CAS  Google Scholar 

  15. Stevens MM, Qanadilo HF, Langer R, Shastri VP (2004) Biomaterials 25:887–894

    CAS  PubMed  Google Scholar 

  16. Kuo CK, Ma PX (2001) Biomaterials 22:511–521

    CAS  PubMed  Google Scholar 

  17. Miculescu F, Maidaniuc A, Voicu SI, Thakur VK, Stan GE, Ciocan LT (2017) ACS Sustain Chem Eng 5:8491–8512

    CAS  Google Scholar 

  18. Gombotz WR, Wee SF (2012) Adv Drug Deliv Rev 31:267–285

    Google Scholar 

  19. Rinaudo M (2014) TIP 17:92–96

    Google Scholar 

  20. Rinaudo M (2008) Polym Int 57:397–430

    CAS  Google Scholar 

  21. Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VJ, Mishra YK (2018) Mater Today Energy 9:154–186

    Google Scholar 

  22. Ong CB, Annuar MSM (2018) Prep Biochem Biotechnol 48:181–187

    CAS  PubMed  Google Scholar 

  23. Rafiee-Pour HA, Nejadhosseinian M, Firouzi M, Masoum S (2019) New J Chem 43:593–600

    CAS  Google Scholar 

  24. Feng W, Ji P (2011) Biotechnol Adv 29:889–895

    CAS  PubMed  Google Scholar 

  25. Prlainović NZ, Bezbradica DI, Rogan JR, Uskoković PS, Mijin D, Marinković AD (2016) C R Chim 19:363–370

    Google Scholar 

  26. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, Pawel B, Baggs J, Cherry S, Rabinowitz JD, Thompson CB (2014) Mol Cell 56:205–218

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alrumman SA, Mostafa YS, Al-izran KA, Alfaifi MY, Taha TH, Elbehairi SE (2019) Sci Rep 9:3756

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu F, Oruna-Concha MJ, Elmore JS (2016) Food Chem 210:163–171

    CAS  PubMed  Google Scholar 

  29. Erdogan A, Koytepe S, Ates B, Yilmaz I, Seckin T (2014) Int J Polym Mater Polym Biomater 63:909–917

    CAS  Google Scholar 

  30. Paillassa J, Leguay T, Thomas X, Huguet F, Audrain M, Lheritier V, Vianey-Saban C, Acquaviva-Bourdain C, Pagan C, Dombret H, Ifrah N, Boissel N, Hunault-Berger M (2018) Blood Cancer J 8:45

    PubMed  PubMed Central  Google Scholar 

  31. Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, Monteiro G, Rangel-Yagui CO, Benyahia B, Junior AP (2019) Front Bioeng Biotechnol 6:212

    PubMed  PubMed Central  Google Scholar 

  32. Kumar K, Kaur J, Walia S, Pathak T, Aggarwal D (2014) Leuk Lymphoma 55:256–262

    CAS  PubMed  Google Scholar 

  33. Dinndorf PA, Gootenberg J, Cohen MH, Keegan P, Pazdur R (2007) Oncologist 12:991–998

    CAS  PubMed  Google Scholar 

  34. Stock W, Douer D, Deangelo DJ, Arellano M, Advani A, Damon L, Kovacsovics T, Litzow M, Rytting M, Borthakur G, Bleyer A (2011) Leuk Lymphoma 52:2237–2253

    CAS  PubMed  Google Scholar 

  35. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, MacIejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) Nucleic Acids Res 46:D1074–D1082

    CAS  Google Scholar 

  36. Mian AJ, Percival E (1973) Carbohydr Res 26:133–146

    CAS  Google Scholar 

  37. Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010) Adv Eng Mater 12:B179–B183

    Google Scholar 

  38. Rahim SNA, Sulaiman A, Hamzah F, Hamid KHK, Rodhi MNM, Musa M, Edama NA (2013) Procedia Eng 68:411–417

    Google Scholar 

  39. Wriston JC, Yellin TO (2006) Adv Enzymol Relat Areas Mol Biol 39:185–248

    Google Scholar 

  40. Bradford MM (1976) Anal Biochem 72:248–254

    CAS  Google Scholar 

  41. Abboud AS, Sanagi MM, Ibrahim WAW, Keyon ASA, Aboul-Enein HY (2018) J Chromatogr Sci 56:177–186

    CAS  PubMed  Google Scholar 

  42. Jeon SY, Yun JM, Lee YS, Kim HI (2010) Carbon Lett 11:117–121

    Google Scholar 

  43. Montanheiro TLDA, Cristóvan FH, Machado JPB, Tada DB, Durán N, Lemes AP (2014) J Mater Res 30:55–65

    Google Scholar 

  44. Singh BP, Choudhary V, Teotia S, Gupta TK, Singh VN, Dhakate SR, Mathur RB (2015) Adv Mater Lett 6:104–113

    CAS  Google Scholar 

  45. Pisal SH, Harale NS, Bhat TS, Deshmukh HP, Patil PS (2014) IOSR J Appl Chem 7:49–52

    Google Scholar 

  46. FuruyamaLima AM, De FreitasLima M, GarridoAssis OB, Raabe A, Amoroso HC, De OliveiraTiera VA, De Andrade MB, JoséTiera M (2018) J Nanomater. https://doi.org/10.1155/2018/4218270

    Article  Google Scholar 

  47. Sundarrajan P, Eswaran P, Marimuthu A, Subhadra LB, Pandian K (2012) Bull Korean Chem Soc 33:3218–3224

    CAS  Google Scholar 

  48. Vellingiri L, Annamalai K, Kandasamy R, Kombiah I (2018) Int J Hydrogen Energy 43:848–860

    CAS  Google Scholar 

  49. Nie P, Min C, Song HJ, Chen X, Zhang Z, Zhao K (2015) Tribol Lett 58:7

    Google Scholar 

  50. Wang Y, Chen H, Wang J, Xing L (2014) Process Biochem 49:1682–1690

    Google Scholar 

  51. Joddar B, Garcia E, Casas A, Stewart CM (2016) Sci Rep 6:32456

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang R, Li Y, Cai W, Zhang H, Li J (2017). In: IOP conference series: earth and environmental science 64:012111

  53. Jun LY, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, Abdullah EC (2019) Sci Rep 9:2215

    PubMed  PubMed Central  Google Scholar 

  54. Nawaz MA, Rehman HU, Bibi Z, Aman A, Ul Qader SA (2015) Biochem Biophys Rep 4:250–256

    PubMed  PubMed Central  Google Scholar 

  55. Talekar S, Chavare S (2012) Recent Res Sci Technol 4:01–05

    CAS  Google Scholar 

  56. Bilal M, Asgher M (2015) BMC Biotechnol 4:02–05

    Google Scholar 

  57. Wang L, Chi L, Lin L (2019) Int J Mol Sci 20:3625

    CAS  PubMed Central  Google Scholar 

  58. Li D, Fang Z, Duan H, Liang L (2019) Biomater Sci 7:2841–2849

    CAS  PubMed  Google Scholar 

  59. Huang WC, Wang W, Xue C, Mao X (2018) ACS Sustain Chem Eng 6:8118–8124

    CAS  Google Scholar 

  60. Ulu A, Koytepe S, Ates B (2016) J Appl Polym Sci 133:19

    Google Scholar 

  61. Ulu A, Koytepe S, Ates B (2016) Polym Bull 73:1891–1907

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhan Ateş.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulu, A., Karaman, M., Yapıcı, F. et al. The Carboxylated Multi-walled Carbon Nanotubes/l-Asparaginase Doped Calcium-Alginate Beads: Structural and Biocatalytic Characterization. Catal Lett 150, 1679–1691 (2020). https://doi.org/10.1007/s10562-019-03069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03069-y

Keywords

Navigation