Skip to main content
Log in

A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 29 December 2021

This article has been updated

Abstract

A tapered single-mode coreless single-mode (SCS) structure with high sensitivity for sensing refractive index is described. In order to achieve high specificity of optical biosensors, here enzyme capsulation film was achieved by embedding urease in zeolitic imidazolate framework (ZIF-8/urease) through in situ growth approach on the coreless fibers. Determination of urea is achieved through online monitoring of its binding to the urease in zeolitic imidazolate framework. Refractive index change result in wavelength shifts of the optical fiber biosensor. The resonance wavelength exhibits a good linear relationship with urea concentration in the range of 1 to 10 mM with detection limit of 0.1 mM and sensitivity of 0.8 mM/RIU (refractive index unit) if operated with broadband light ranging from 1525 nm to 1590 nm. Final assessment of optical biosensor in real sample was performed where excellent performance in terms of sensitivity and selectivity was observed.

Schematic representation of experimental setup and mechanism for urea detection. A tapered single-mode coreless single-mode (SCS) structure is placed between a broadband light source ranging (BBS) and optical spectrum analyzer (OSA). ZIF-8/urease composites are applied as a recognition layer for urea detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Li L, Liang Y, Liu Q, Peng W (2016) Dual-Channel Fiber-optic biosensor for self-compensated refractive index measurement. IEEE Photon Technol Lett 28(19):2110–2113

    Article  CAS  Google Scholar 

  2. Baliyan A, Sital S, Tiwari U, Gupta R, Sharma EK (2016) Long period fiber grating based sensor for the detection of triacylglycerides. Biosens Bioelectron 79:693–700

    Article  CAS  PubMed  Google Scholar 

  3. André RM, Warren-Smith SC, Becker M, Dellith J, Rothhardt M, Zibaii MI, Latifi H, Marques MB, Bartelt H, Frazão O (2016) Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips. Opt Express 24(13):14053–14065

    Article  PubMed  Google Scholar 

  4. Zhang S, Zhao Z, Chen N, Pang F, Chen Z, Liu Y, Wang T (2015) Temperature characteristics of silicon core optical fiber Fabry-Perot interferometer. Opt Lett 40(7):1362–1365

    Article  CAS  PubMed  Google Scholar 

  5. Hao S, Hu M, Rong Q, Du Y, Yang H, Qiao X (2014) High sensitivity optical fiber temperature sensor based on the temperature cross-sensitivity feature of RI-sensitive device. Opt Commun 323(14):28–31

    Google Scholar 

  6. Xu J, Pickrell G, Wang X, Wei P, Cooper K, Wang A (2005) A novel temperature-insensitive optical fiber pressure sensor for harsh environments. IEEE Photon Technol Lett 17(4):870–872

    Article  Google Scholar 

  7. Monzon-Hernandez D, Martinez-Rios A, Torres-Gomez I, Salceda-Delgado G (2011) Compact optical fiber curvature sensor based on concatenating two tapers. Opt Lett 36(22):4380–4382

    Article  CAS  PubMed  Google Scholar 

  8. Wang XD, Wolfbeis OS (2016) Fiber-optic chemical sensors and biosensors (2013-2015). Anal Chem 88(1):203–227

    Article  CAS  PubMed  Google Scholar 

  9. Wang XD, Wolfbeis OS (2019) Fiber-Optic Chemical Sensors and Biosensors (2015-2019). Anal Chem, on the web. DOI: https://doi.org/10.1021/acs.analchem.9b04708

    Article  PubMed  Google Scholar 

  10. Guo T, Liu F, Liang X, Qiu X, Huang Y, Xie C, Xu P, Mao W, Guan BO, Albert J (2016) Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens Bioelectron 78:221–228

    Article  CAS  PubMed  Google Scholar 

  11. Hromadka J, Tokay B, James S, Tatam RP, Korposh S (2015) Optical fibre long period grating gas sensor modified with metal organic framework thin films. Sensor Actuat B-Chem 221:891–899

    Article  CAS  Google Scholar 

  12. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12(3):213–220

    Article  CAS  Google Scholar 

  13. Katarzyna G, Tadeusz M, Maciej N, Kinga Z, Pawel M, Waclaw U (2017) A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber. J Opt 19(2):025001

    Article  Google Scholar 

  14. Lee B, Park J-H, Byun J-Y, Kim JH, Kim M-G (2018) An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin a. Biosens Bioelectron 102:504–509

    Article  CAS  PubMed  Google Scholar 

  15. Menon PS, Said FA, Mei GS, Berhanuddin DD, Umar AA, Shaari S, Majlis BY (2018) Urea and creatinine detection on nano-laminated gold thin film using Kretschmann-based surface plasmon resonance biosensor. PLoS One 13(7):e0201228–e0201228

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mishra S K, Gupta B D, Surface plasmon resonance (SPR) based fiber optic urea sensor using silver, ITO and enzyme entrapped gel layers, in: Frontiers in Optics 2014, Optical Society of America, Tucson, Arizona, 2014, pp. FTu5B.3

  17. Yin MJ, Huang B, Gao S, Zhang AP, Ye X (2016) Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. Biomed Opt Express 7(5):2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan Y, Sun L-P, Jin L, Li J, Guan B-O (2013) Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications. Opt Express 21(1):154–164

    Article  CAS  PubMed  Google Scholar 

  19. Li K, Liu G, Wu Y, Hao P, Zhou W, Zhang Z (2014) Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 120(Supplement C):419–424

    Article  CAS  PubMed  Google Scholar 

  20. Tripathi SM, Kumar A, Varshney RK, Kumar YBP, Marin E, Meunier JP (2009) Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures. J Lightwave Technol 27(13):2348–2356

    Article  CAS  Google Scholar 

  21. Liu ZB, Tan Z, Yin B, Bai Y, Jian S (2014) Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser. Opt Express 22(5):5037–5042

    Article  PubMed  Google Scholar 

  22. Tyagi D, Mishra SK, Zou B, Lin C, Hao T, Zhang G, Lu A, Chiang KS, Yang Z (2018) Nano-functionalized long-period fiber grating probe for disease-specific protein detection. J Mater Chem B 6(3):386–392

    Article  CAS  Google Scholar 

  23. Tam JM, Song L, Walt DR (2009) DNA detection on ultrahigh-density optical fiber-based nanoarrays. Biosens Bioelectron 24(8):2488–2493

    Article  CAS  PubMed  Google Scholar 

  24. Jiang B, Zhou K, Wang C, Sun Q, Yin G, Tai Z, Wilson K, Zhao J, Zhang L (2018) Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors and Actuators B: Chemical 254(Supplement C):1033–1039

    Article  CAS  Google Scholar 

  25. Baliyan A, Bhatia P, Gupta BD, Sharma EK, Kumari A, Gupta R (2013) Surface plasmon resonance based fiber optic sensor for the detection of triacylglycerides using gel entrapment technique. Sensors Actuators B Chem 188:917–922

    Article  CAS  Google Scholar 

  26. Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyu F, Zhang Y, Zare RN, Ge J, Liu Z (2014) One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett 14(10):5761–5765

    Article  CAS  PubMed  Google Scholar 

  28. Shieh F-K, Wang S-C, Yen C-I, Wu C-C, Dutta S, Chou L-Y, Morabito JV, Hu P, Hsu M-H, Wu KCW, Tsung C-K (2015) Imparting functionality to biocatalysts via embedding enzymes into Nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 137(13):4276–4279

    Article  CAS  PubMed  Google Scholar 

  29. Nazari M, Forouzandeh MA, Divarathne CM, Sidiroglou F, Martinez MR, Konstas K, Muir BW, Hill AJ, Duke MC, Hill MR, Collins SF (2016) UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. Opt Lett 41(8):1696–1699

    Article  CAS  PubMed  Google Scholar 

  30. Hou C, Wang Y, Ding Q, Jiang L, Li M, Zhu W, Pan D, Zhu H, Liu M (2015) Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44):18770–18779

    Article  CAS  Google Scholar 

  31. Wu X, Yang C, Ge J, Liu Z (2015) Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale 7(45):18883–18886

    Article  CAS  PubMed  Google Scholar 

  32. Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P (2017) Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc Chem Res 50(6):1423–1432

    Article  CAS  PubMed  Google Scholar 

  33. Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL (2014) A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors (Basel) 14(7):13186–13209

    Article  CAS  Google Scholar 

  34. Swati M, Hase NK, Srivastava R (2010) Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate. Anal Chim Acta 676(1):68–74

    Article  CAS  PubMed  Google Scholar 

  35. Bhatia P, Gupta BD (2012) Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sensors Actuators B Chem 161(1):434–438

    Article  CAS  Google Scholar 

  36. de Marcos S, Hortigüela R, Gatbán J, Castillo J R, Wolfbeis O S J M A (1999) Characterization of a urea optical sensor based on polypyrrole. 130(4):267–272

  37. Mehta J, Bhardwaj N, Bhardwaj SK, Kim K-H, Deep A (2016) Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coordination Chemistry Reviews 322(Supplement C):30–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the following sources: National Natural Science Foundation of China Grant (61805016; 61735002); National Key R&D Program of China (2018YFF01012000); Research Fund from Beijing Innovation Center for Future Chips, General Project of Science and Technology Plan of Beijing Education Commission and Key Cultivation Projects of Beijing Information Science and Technology University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guixian Zhu or Mingli Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Cheng, L., Qi, R. et al. A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor. Microchim Acta 187, 72 (2020). https://doi.org/10.1007/s00604-019-4026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4026-0

Keywords

Navigation