Skip to main content
Log in

A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nano-biotechnology research has become extremely important due to the possibilities in manipulation and characterization of biological molecules through nanodevices. Nanomaterials exhibit exciting electrical, optoelectronic, magnetic, mechanical and chemical properties that can be exploited to develop efficient biosensors or bio-probes. Those unique properties in nanomaterials can also be used in bioimaging and cancer therapeutics, where biomolecules influence the inherent properties in nanomaterials. Effective manipulation of nanomaterial properties can lead to many breakthroughs in nanotechnology applications. Nowadays, 2D nanomaterials have emerged as viable materials for nanotechnology. Large cross-section area and functional availability of 2D or 1D quantum limit in these nanomaterials allow greater flexibility and better nanodevice performance. 2D nanomaterials enable advanced bioelectronics to be more easily integrated due to their atomic thickness, biocompatibility, mechanical flexibility and conformity. Furthermore, with the development of 2D material heterostructures, enhanced material properties can be obtained which can directly influence bio-nanotechnology applications. This article firstly reviews the development of various types of 2D heterostructures in a wide variety of nano-biotechnology applications. Furthermore, future 2D heterostructure scopes in bioimaging, nanomedicine, bio-markers/therapy and bioelectronics are discussed. This paper can be an avenue for providing a wide scope for 2D van der Waals (vdWs) heterostructures in bio- and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  2. Yan, A.; Velasco, Jr., J.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, W.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett.2015, 15, 6324–6331.

    CAS  Google Scholar 

  3. Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895.

    CAS  Google Scholar 

  4. Hwang, W. S.; Remskar, M.; Yan, R. S.; Protasenko, V.; Tahy, K.; Chae, S. D.; Zhao, P.; Konar, A.; Xing, H. L. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 2012, 101, 013107.

    Google Scholar 

  5. Tebyetekerwa, M.; Zhang, J.; Liang, K.; Duong, T.; Neupane, G. P.; Zhang, L. L.; Liu, B. Q.; Truong, T. N.; Basnet, R. et al. Quantifying quasi-fermi level splitting and mapping its heterogeneity in atomically thin transition metal dichalcogenides. Adv. Mater. 2019, 31, 1900522.

    Google Scholar 

  6. Zhu, Y.; Li, Z. Y.; Zhang, L. L.; Wang, B. W.; Luo, Z. Q.; Long, J. Z.; Yang, J.; Fu, L.; Lu, Y. R. High-efficiency monolayer molybdenum ditelluride light-emitting diode and photodetector. ACS Appl. Mater. Interfaces2018, 10, 43291–43298.

    CAS  Google Scholar 

  7. Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

    CAS  Google Scholar 

  8. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science2013, 340, 1226419.

    Google Scholar 

  9. Gomes, L. C.; Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B2015, 92, 085406.

    Google Scholar 

  10. Shi, G. S.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926–6931.

    Google Scholar 

  11. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    CAS  Google Scholar 

  12. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano2012, 6, 1322–1331.

    CAS  Google Scholar 

  13. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

    CAS  Google Scholar 

  14. Sharma, A.; Khan, A.; Zhu, Y.; Halbich, R.; Ma, W. D.; Tang, Y. L.; Wang, B. W.; Lu, Y. R. Quasi-line spectral emissions from highly crystalline one-dimensional organic nanowires. Nano Lett. 2019, 19, 7877–7886.

    CAS  Google Scholar 

  15. Neupane, G. P.; Dhakal, K. P.; Cho, E. H.; Kim, B. G.; Lim, S.; Lee, J.; Seo, C.; Kim, Y. B.; Kim, M. S. et al. Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: Nanoscale optical and electrical characteristics. Electron. Mater. Lett. 2015, 11, 741–748.

    CAS  Google Scholar 

  16. Neupane, G. P.; Ma, W. D.; Yildirim, T.; Tang, Y. L.; Zhang, L. L.; Lu, Y. R. 2D organic semiconductors, the future of green nano-technology. Nano Mater. Sci. 2019, in press, DOI: 10.1016/j.nanoms.2019.10.002.

    Google Scholar 

  17. Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B. et al. Efficient and layer-dependent exciton pumping across atomically thin organic–inorganic type-I heterostructures. Adv. Mater. 2018, 30, 1803986.

    Google Scholar 

  18. Chong, Y.; Ge, C. C.; Fang, G.; Wu, R. F.; Zhang, H.; Chai, Z. F.; Chen, C. Y.; Yi, J. J. Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol. 2017, 51, 10154–10161.

    CAS  Google Scholar 

  19. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Google Scholar 

  20. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    CAS  Google Scholar 

  21. Pan, Y. Z.; Sahoo, N. G.; Li, L. The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv. 2012, 9, 1365–1376.

    CAS  Google Scholar 

  22. Li, B. L.; Setyawati, M. I.; Chen, L. Y.; Xie, J. P.; Ariga, K.; Lim, C. T.; Garaj, S.; Leong, D. T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces2017, 9, 15286–15296.

    CAS  Google Scholar 

  23. Han, X. X.; Huang, J.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of Cancer. Adv. Healthc. Mater. 2018, 7, e1701394.

    Google Scholar 

  24. McManus, D.; Vranic, S.; Withers, F.; Sanchez-Romaguera, V.; Macucci, M.; Yang, H. F.; Sorrentino, R.; Parvez, K.; Son, S. K. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343–350.

    CAS  Google Scholar 

  25. Merlo, A.; Mokkapati, V. R. S. S.; Pandit, S.; Mijakovic, I. Boron nitride nanomaterials: Biocompatibility and bio-applications. Biomater. Sci. 2018, 6, 2298–2311.

    CAS  Google Scholar 

  26. Chen, H.; Liu, T. J.; Su, Z. Q.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89.

    CAS  Google Scholar 

  27. Shi, X. Z.; Gong, H.; Li, Y. J.; Wang, C.; Cheng, L.; Liu, Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials2013, 34, 4786–4793.

    CAS  Google Scholar 

  28. Luo, Y. N.; Li, Z. H.; Zhu, C. Z.; Cai, X. L.; Qu, L. B.; Du, D.; Lin, Y. H. Graphene-like metal-free 2D nanosheets for cancer imaging and theranostics. Trends Biotechnol. 2018, 36, 1145–1156.

    CAS  Google Scholar 

  29. Liu, B.; Li, C. X.; Chen, G. Y.; Liu, B.; Deng, X. R.; Wei, Y.; Xia, J.; Xing, B. G.; Ma, P. A. et al. Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv. Sci. 2017, 4, 1600540.

    Google Scholar 

  30. Chen, Y. J.; Wu, Y. K.; Sun, B. B.; Liu, S. J.; Liu, H. Y. Two-dimensional nanomaterials for cancer nanotheranostics. Small2017, 13, 1603446.

    Google Scholar 

  31. Shao, J. D.; Xie, H. H.; Wang, H. Y.; Zhou, W. H.; Luo, Q.; Yu, X. F.; Chu, P. K. 2D material-based nanofibrous membrane for photothermal cancer therapy. ACS Appl. Mater. Interfaces2018, 10, 1155–1163.

    CAS  Google Scholar 

  32. Lu, C.; Liu, Y. B.; Ying, Y. B.; Lin, J. W. Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir2017, 33, 630–637.

    Google Scholar 

  33. Barua, S.; Dutta, H. S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-based advanced biosensors: A review. ACS Appl. Nano Mater. 2018, 1, 2–25.

    CAS  Google Scholar 

  34. Gao, L.; Li, Q.; Deng, Z. B.; Brady, B.; Xia, N.; Zhou, Y.; Shi, H. X. Highly sensitive protein detection via covalently linked aptamer to MoS2 and exonuclease-assisted amplification strategy. Int. J. Nanomedicine2017, 12, 7847–7853.

    CAS  Google Scholar 

  35. Kang, P.; Wang, M. C.; Nam, S. W. Bioelectronics with two-dimensional materials. Microelectron. Eng. 2016, 161, 18–35.

    CAS  Google Scholar 

  36. Zhang, T.; Liu, J. L.; Wang, C.; Leng, X. Y.; Xiao, Y.; Fu, L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens. Bioelectron. 2017, 89, 28–42.

    CAS  Google Scholar 

  37. Osikoya, A. O.; Tiwari, A. Recent advances in 2D bioelectronics. Biosens. Bioelectron. 2017, 89, 1–7.

    CAS  Google Scholar 

  38. Neupane, G. P.; Tran, M. D.; Kim, H.; Kim, J. Modulation of optical and electrical characteristics by laterally stretching DNAs on CVD-grown monolayers of MoS2. J. Nanomater. 2017, 2017, 2565703.

    Google Scholar 

  39. Metsemakers, W. J.; Kuehl, R.; Moriarty, T. F.; Richards, R. G.; Verhofstad, M. H. J.; Borens, O.; Kates, S.; Morgenstern, M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury2018, 49, 511–522.

    CAS  Google Scholar 

  40. Shadjou, N.; Hasanzadeh, M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J. Biomed. Mater. Res. A2016, 104, 1250–1275.

    CAS  Google Scholar 

  41. Fan, J. J.; Li, Y. F.; Nguyen, H. N.; Yao, Y.; Rodrigues, D. F. Toxicity of exfoliated-MoS2 and annealed exfoliated-MoS2 towards planktonic cells, biofilms, and mammalian cells in the presence of electron donor. Environ. Sci.: Nano2015, 2, 370–379.

    CAS  Google Scholar 

  42. Yang, X.; Li, J.; Liang, T.; Ma, C. Y.; Zhang, Y. Y.; Chen, H. Z.; Hanagata, N.; Su, H. X.; Xu, M. S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale2014, 6, 10126–10133.

    CAS  Google Scholar 

  43. Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598.

    Google Scholar 

  44. Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano2011, 5, 6971–6980.

    CAS  Google Scholar 

  45. Li, T.; Shen, J. F.; Li, N.; Ye, M. X. Facile in situ synthesis of hydrophilic RGO–CD–Ag supramolecular hybrid and its enhanced antibacterial properties. Mater. Sci. Eng. C2014, 39, 352–358.

    CAS  Google Scholar 

  46. Eliaz, N.; Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials2017, 10, 334.

    Google Scholar 

  47. Kolmas, J.; Groszyk, E.; Kwiatkowska-Różycka, D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int. 2014, 2014, 178123.

    Google Scholar 

  48. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    CAS  Google Scholar 

  49. Zhang, Y. J.; Kim, Y.; Gilbert, M. J.; Mason, N. Electronic transport in a two-dimensional superlattice engineered via self-assembled nanostructures. NPJ 2D Mater. Appl. 2018, 2, 31.

    Google Scholar 

  50. Ghimire, G.; Dhakal, K. P.; Neupane, G. P.; Jo, S. G.; Kim, H.; Seo, C.; Lee, Y. H.; Joo, J.; Kim, J. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer. Nanotechnology2017, 28, 185702.

    Google Scholar 

  51. Wang, X. H.; Yildirim, T.; Si, K. J.; Sharma, A.; Xue, Y. Z.; Qin, Q. H.; Bao, Q. L.; Cheng, W. L.; Lu, Y. R. An adaptive soft plasmonic nanosheet resonator. Laser Photonics Rev. 2019, 13, 1800302.

    Google Scholar 

  52. Tedeschi, D.; Blundo, E.; Felici, M.; Pettinari, G.; Liu, B. Q.; Yildrim, T.; Petroni, E.; Zhang, C.; Zhu, Y. et al. Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides. Adv. Mater. 2019, 31, 1903795.

    CAS  Google Scholar 

  53. Zhang, L. L.; Yan, H.; Sun, X. Q.; Dong, M. H.; Yildirim, T.; Wang, B. W.; Wen, B.; Neupane, G. P.; Sharma, A. et al. Modulated interlayer charge transfer dynamics in a monolayer TMD/metal junction. Nanoscale2019, 11, 418–425.

    CAS  Google Scholar 

  54. Peña-Bahamonde, J.; Nguyen, H. N.; Fanourakis, S. K.; Rodrigues, D. F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75.

    Google Scholar 

  55. Kumar, S.; Lei, Y. J.; Alshareef, N. H.; Quevedo-Lopez, M. A.; Salama, K. N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243–249.

    CAS  Google Scholar 

  56. Zheng, J. S.; Wang, B.; Ding, A. L.; Weng, B.; Chen, J. C. Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J. Electroanal. Chem. 2018, 816, 189–194.

    CAS  Google Scholar 

  57. Rasoo, K.; Hela, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano2016, 10, 3674–3684.

    Google Scholar 

  58. Lin, H.; Chen, Y.; Shi, J. L. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. 2018, 5, 1800518.

    Google Scholar 

  59. Sharma, A.; Wen, B.; Liu, B. Q.; Myint, Y. W.; Zhang, H.; Lu, Y. R. Defect engineering in few-layer phosphorene. Small2018, 14, 1704556.

    Google Scholar 

  60. Pei, J. J.; Yang, J.; Yildirim, T.; Zhang, H.; Lu, Y. R. Many-body complexes in 2D semiconductors. Adv. Mater. 2019, 31, 1706945.

    Google Scholar 

  61. Pei, J. J.; Yang, J.; Wang, X. B.; Wang, F.; Mokkapati, S.; Lü, T. Y.; Zheng, J. C.; Qin, Q. H.; Neshev, D. et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano2017, 11, 7468–7475.

    CAS  Google Scholar 

  62. Zhu, Y.; Yang, J.; Zhang, S.; Mokhtar, S.; Pei, J. J.; Wang, X. H.; Lu, Y. R. Strongly enhanced photoluminescence in nanostructured monolayer MoS2 by chemical vapor deposition. Nanotechnology2016, 27, 135706.

    Google Scholar 

  63. Neupane, G. P.; Zhou, K.; Chen, S. S.; Yildirim, T.; Zhang, P. X.; Lu, Y. R. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices. Small2019, 15, 1804733.

    Google Scholar 

  64. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

    CAS  Google Scholar 

  65. Tan, C. L.; Yu, P.; Hu, Y. L.; Chen, J. Z.; Huang, Y.; Cai, Y. Q.; Luo, Z. M.; Li, B.; Lu, Q. P. et al. High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 2015, 137, 10430–10436.

    CAS  Google Scholar 

  66. Ou, J. Z.; Chrimes, A. F.; Wang, Y. C.; Tang, S. Y.; Strano, M. S.; Kalantar-zadeh, K. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Lett. 2014, 14, 857–863.

    CAS  Google Scholar 

  67. Sharma, A.; Yan, H.; Zhang, L. L.; Sun, X. Q.; Liu, B. Q.; Lu, Y. R. Highly enhanced many-body interactions in anisotropic 2D semiconductors. Acc. Chem. Res. 2018, 51, 1164–1173.

    CAS  Google Scholar 

  68. Cui, Y. Y.; Yang, J.; Zhou, Q. F.; Liang, P.; Wang, Y. L.; Gao, X. Y.; Wang, Y. T. Renal clearable Ag nanodots for in vivo computer tomography imaging and photothermal therapy. ACS Appl. Mater. Interfaces2017, 9, 5900–5906.

    CAS  Google Scholar 

  69. Sun, W. J.; Thies, S.; Zhang, J. L.; Peng, C.; Tang, G. Y.; Shen, M. W.; Pich, A.; Shi, X. Y. Gadolinium-loaded poly(N-vinylcaprolactam) nanogels: Synthesis, characterization, and application for enhanced tumor MR imaging. ACS Appl. Mater. Interfaces2017, 9, 3411–3418.

    CAS  Google Scholar 

  70. Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z. N.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.

    CAS  Google Scholar 

  71. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160–4164.

    CAS  Google Scholar 

  72. Lei, Z. Y.; Zhu, W. C.; Xu, S. J.; Ding, J.; Wan, J. X.; Wu, P. Y. Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices. ACS Appl. Mater. Interfaces2016, 8, 20900–20908.

    CAS  Google Scholar 

  73. Chen, H.; Liu, T. J.; Su, Z. Q.; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89.

    CAS  Google Scholar 

  74. Zhi, C. Y.; Bando, Y.; Terao, T.; Tang, C. C.; Kuwahara, H.; Golberg, D. Chemically activated boron nitride nanotubes. Chem. Asian J. 2009, 4, 1536–1540.

    CAS  Google Scholar 

  75. Sainsbury, T.; O’Neill, A.; Passarelli, M. K.; Seraffon, M.; Gohil, D.; Gnaniah, S.; Spencer, S. J.; Rae, A.; Coleman, J. N. Dibromocarbene functionalization of boron nitride nanosheets: Toward band gap manipulation and nanocomposite applications. Chem. Mater. 2014, 26, 7039–7050.

    CAS  Google Scholar 

  76. Zeng, Z. Y.; Tan, C. L.; Huang, X.; Baoa, S. Y.; Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 797–803.

    CAS  Google Scholar 

  77. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D. Covalent functionalization: Towards soluble Multiwalled boron nitride nanotubes. Angew. Chem., Int. Ed. 2005, 44, 7932–7935.

    CAS  Google Scholar 

  78. Weng, Q. H.; Wang, B. J.; Wang, X. B.; Hanagata, N.; Li, X.; Liu, D. Q.; Wang, X.; Jiang, X. F.; Bando, Y. et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano2014, 8, 6123–6130.

    CAS  Google Scholar 

  79. Vogl, T.; Lecamwasam, R.; Buchler, B. C.; Lu, Y. R.; Lam, P. K. Compact cavity-enhanced single-photon generation with hexagonal boron nitride. ACS Photonics2019, 6, 1955–1962.

    CAS  Google Scholar 

  80. Li, X.; Zhi, C. Y.; Hanagata, N.; Yamaguchi, M.; Bando, Y.; Golberg, D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem. Commun. 2013, 49, 7337–7339.

    CAS  Google Scholar 

  81. Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C. Y.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano2011, 5, 3800–3810.

    Google Scholar 

  82. Rasheed, P. A.; Sandhyarani, N. Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sens. Actuators B Chem. 2014, 204, 777–782.

    CAS  Google Scholar 

  83. Feng, L. Y.; Chen, Y.; Ren, J. S.; Qu, X. G. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials2011, 32, 2930–2937.

    CAS  Google Scholar 

  84. Muthuraj, B.; Mukherjee, S.; Chowdhury, S. R.; Patra, C. R.; Iyer, P. K. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens. Bioelectron. 2017, 89, 636–644.

    CAS  Google Scholar 

  85. Zhu, C. Z.; Du, D.; Lin, Y. H. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2D Mater. 2015, 2, 032004.

    Google Scholar 

  86. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. Adv. Mater. 2010, 22, 3906–3924.

    CAS  Google Scholar 

  87. Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem., Int. Ed. 2010, 49, 5708–5711.

    CAS  Google Scholar 

  88. Zhu, X. B.; Ji, X. Y.; Kong, N.; Chen, Y. H.; Mahmoudi, M.; Xu, X. D.; Ding, L.; Tao, W.; Cai, T. et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano2018, 12, 2922–2938.

    CAS  Google Scholar 

  89. Pandit, S.; Karunakaran, S.; Boda, S. K.; Basu, B.; De, M. High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Interfaces2016, 8, 31567–31573.

    CAS  Google Scholar 

  90. Choi, J. R.; Yong, K. W.; Choi, J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. N. Black phosphorus and its biomedical applications. Theranostics2018, 8, 1005–1026.

    CAS  Google Scholar 

  91. Lu, X. L.; Feng, X. D.; Werber, J. R.; Chu, C. H.; Zucker, I.; Kim, J. H.; Osuji, C. O.; Elimelech, M. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. USA2017, 114, E9793–E9801.

    CAS  Google Scholar 

  92. Dellieu, L.; Lawarée, E.; Reckinger, N.; Didembourg, C.; Letesson, J. J.; Sarrazin, M.; Deparis, O.; Matroule, J. Y.; Colomer, J. F. Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon2015, 84, 310–316.

    CAS  Google Scholar 

  93. Gao, Y.; Wu, J. C.; Ren, X. M.; Tan, X. L.; Hayat, T.; Alsaedi, A.; Cheng, C.; Chen, C. L. Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. Environ. Sci.: Nano2017, 4, 1016–1024.

    CAS  Google Scholar 

  94. Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S. J. Antibacterial activity of graphene oxide nanosheets. Sci. Adv. Mater. 2012, 4, 1111–1117.

    CAS  Google Scholar 

  95. Li, T.; Shen, J. F.; Li, N.; Ye. M. X. Facile in situ synthesis of hydrophilic RGO–CD–Ag supramolecular hybrid and its enhanced antibacterial properties. Mater. Sci. Eng. C2014, 39, 352–358.

    CAS  Google Scholar 

  96. Bang, G. S.; Cho, S.; Son, N.; Shim, G. W.; Cho, B. K.; Choi, S. Y. DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl. Mater. Interfaces2016, 8, 1943–1950.

    CAS  Google Scholar 

  97. Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano2016, 10, 3674–3684.

    CAS  Google Scholar 

  98. Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

    Google Scholar 

  99. Cheng, L.; Yuan, C.; Shen, S. D.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano2015, 9, 11090–11101.

    CAS  Google Scholar 

  100. Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438–4443.

    CAS  Google Scholar 

  101. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    CAS  Google Scholar 

  102. Xu, B. Z.; Zhu, M. S.; Zhang, W. C.; Zhen, X.; Pei, Z. X.; Xue, Q.; Zhi, C. Y.; Shi, P. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 2016, 28, 3333–3339.

    CAS  Google Scholar 

  103. Zheng, C.; Huang, L.; Zhang, H.; Sun, Z. Y.; Zhang, Z. Y.; Zhang, G. J. Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Interfaces2015, 7, 16953–16959..

    CAS  Google Scholar 

  104. Afsahi, S.; Lerner, M. B.; Goldstein, J. M.; Lee, J.; Tang, X. L.; Bagarozzi, D. A. Jr.; Pan, D.; Locascio, L.; Walker, A. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018, 100, 85–88.

    CAS  Google Scholar 

  105. Gong, Q. J.; Wang, Y. D.; Yang, H. Y. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 2017, 89, 565–569.

    CAS  Google Scholar 

  106. Wu, X.; Mu, F. W.; Wang, Y. H.; Zhao, H. Y. Graphene and graphene-based nanomaterials for DNA detection: A review. Molecules2018, 23, 2050.

    Google Scholar 

  107. Lin, J.; Teweldebrhan, D.; Ashraf, K.; Liu, G. X.; Jing, X. Y.; Yan, Z.; Li, R.; Ozkan, M.; Lake, R. K. et al. Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small2010, 6, 1150–1155.

    CAS  Google Scholar 

  108. Dong, H. F.; Zhang, J.; Ju, H. X.; Lu, H. T.; Wang, S. Y.; Jin, S.; Hao, K. H.; Du, H. W.; Zhang, X. J. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal. Chem. 2012, 84, 4587–4593.

    CAS  Google Scholar 

  109. Ye, Y. K.; Xie, J. Q.; Ye, Y. W.; Cao, X. D.; Zheng, H. S.; Xu, X.; Zhang, Q. A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon2018, 129, 730–737.

    CAS  Google Scholar 

  110. Wang, X. X.; Nan, F. X.; Zhao, J. L.; Yang, T.; Ge, T.; Jiao, K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens. Bioelectron. 2015, 64, 386–391.

    CAS  Google Scholar 

  111. Chen, C. H. Label-free detection of DNA hybridization on MoS2 using photoluminescence measurements. In Proceedings of the 9th IEEE International Conference on Nano/Molecular Medicine & Engineering, Honolulu, USA, 2015, pp 196–199.

    Google Scholar 

  112. Xiang, X.; Shi, J. B.; Huang, F. H.; Zheng, M. M.; Deng, Q. C.; Xu, J. Q. MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Biosens. Bioelectron. 2015, 74, 227–232.

    CAS  Google Scholar 

  113. Wang, T. Y.; Zhu, H. C.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. X. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013, 85, 10289–10295.

    CAS  Google Scholar 

  114. Lin, X. Y.; Ni, Y. N.; Kokot, S. Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 233, 100–106.

    CAS  Google Scholar 

  115. Wu, L. X.; Lu, X. B.; Dhanjai; Wu, Z. S.; Dong, Y. F.; Wang, X. H.; Zheng, S. H.; Chen, J. P. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron. 2018, 107, 69–75.

    CAS  Google Scholar 

  116. Tuteja, S. K.; Neethirajan, S. Exploration of two-dimensional bio-functionalized phosphorene nanosheets (black phosphorous) for label free haptoglobin electro-immunosensing applications. Nanotechnology2018, 29, 135101.

    Google Scholar 

  117. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D. et al. Single-layer MoS2 phototransistors. ACS Nano2012, 6, 74–80.

    CAS  Google Scholar 

  118. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano2011, 5, 9703–9709.

    CAS  Google Scholar 

  119. Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469–4476.

    CAS  Google Scholar 

  120. Park, H. Y.; Dugasani, S. R.; Kang, D. H.; Jeon, J.; Jang, S. K.; Lee, S.; Roh, Y.; Park, S. H.; Park, J. H. n- and p-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano2014, 8, 11603–11613.

    CAS  Google Scholar 

  121. Loan, P. T. K.; Zhang, W. J.; Lin, C. T.; Wei, K. H.; Li, L. J.; Chen, C. H. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv. Mater. 2014, 26, 4838–4844.

    CAS  Google Scholar 

  122. Zeng, S. W.; Hu, S. Y.; Xia, J.; Anderson, T.; Dinh, X. Q.; Meng, X. M.; Coquet, P.; Yong, K. T. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810.

    CAS  Google Scholar 

  123. Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B. L.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.

    CAS  Google Scholar 

  124. Lu, J. P.; Yang, J.; Carvalho, A.; Liu, H. W.; Lu, Y. R.; Sow, C. H. Light–matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806–1815.

    CAS  Google Scholar 

  125. Chen, H. T.; Corboliou, V.; Solntsev, A. S.; Choi, D. Y.; Vincenti, M. A.; de Ceglia, D.; de Angelis, C.; Lu, Y. R.; Neshev, D. N. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl. 2017, 6, e17060.

    CAS  Google Scholar 

  126. Neupane, G. P.; Dhakal, K. P.; Kim, H.; Lee, J.; Kim, M. S.; Han, G.; Lee, Y. H.; Kim, J. Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2. J. Appl. Phys. 2016, 120, 051702.

    Google Scholar 

  127. Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano2016, 10, 2399–2405.

    CAS  Google Scholar 

  128. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today2017, 20, 116–130.

    CAS  Google Scholar 

  129. Yang, F.; Song, P.; Ruan, M. B.; Xu, W. L. Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem2019, 18, 100133.

    Google Scholar 

  130. Yan, Z.; He, X. X.; She, L. N.; Sun, J.; Jiang, R. B.; Xu, H.; Shi, F.; Lei, Z. B.; Liu, Z. H. Solvothermal-assisted liquid-phase exfoliation of large size and high quality black phosphorus. J. Mater. 2018, 4, 129–134.

    Google Scholar 

  131. Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.

    Google Scholar 

  132. Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir2008, 24, 10560–10564.

    CAS  Google Scholar 

  133. Pinto, A. M.; Moreira, J. A.; Magalhães, F. D.; Goncalves, I. C. Polymer surface adsorption as a strategy to improve the biocompatibility of graphene nanoplatelets. Colloids Surf. B2016, 146, 818–824.

    CAS  Google Scholar 

  134. Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R. Functionalization of two-dimensional MoS2: On the reaction between MoS2 and organic thiols. Angew. Chem., Int. Ed. 2016, 55, 5803–5808.

    CAS  Google Scholar 

  135. Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano2015, 9, 12115–12123.

    CAS  Google Scholar 

  136. Tuxen, A.; Kibsgaard, J.; Gøbel, H.; Lægsgaard, E.; Topsøe, H.; Lauritsen, J. V.; Besenbacher, F. Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano2010, 4, 4677–4682.

    CAS  Google Scholar 

  137. Knirsch, K. C.; Berner, N. C.; Nerl, H. C.; Cucinotta, C. S.; Gholamvand, Z.; McEvoy, N.; Wang, Z. X.; Abramovic, I.; Vecera, P. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano2015, 9, 6018–6030.

    CAS  Google Scholar 

  138. Voiry, D.; Goswami, A.; Kappera, R.; de Carvalho Castro e Silva, C.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2014, 7, 45–49.

    Google Scholar 

  139. Lee, M.; Kwon, J.; Na, S. Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Phys. Chem. Chem. Phys. 2016, 18, 4814–4821.

    CAS  Google Scholar 

  140. Luo, J.; Vargheese, K. D.; Tandia, A.; Hu, G. L.; Mauro, J. C. Crack nucleation criterion and its application to impact indentation in glasses. Sci. Rep. 2016, 6, 23720.

    CAS  Google Scholar 

  141. Guo, C.; Xu, M. M.; Xu, S. Y.; Wang, L. Y. Multifunctional nanoprobes for both fluorescence and 19F magnetic resonance imaging. Nanoscale2017, 9, 7163–7168.

    CAS  Google Scholar 

  142. Xu, S. Y.; Bai, X. L.; Ma, J. W.; Xu, M. M.; Hu, G. F.; James, T. D.; Wang, L. Y. Ultrasmall organic nanoparticles with aggregation-induced emission and enhanced quantum yield for fluorescence cell imaging. Anal. Chem. 2016, 88, 7853–7857.

    CAS  Google Scholar 

  143. Nune, S. K.; Gunda, P.; Thallapally, P. K.; Lin, Y. Y.; Forrest, M. L.; Berkland, C. J. Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 2009, 6, 1175–1194.

    CAS  Google Scholar 

  144. Wen, W.; Song, Y.; Yan, X.; Zhu, C. Z.; Du, D.; Wang, S. F.; Asiri, A. M.; Lin, Y. H. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today2018, 21, 164–177.

    CAS  Google Scholar 

  145. Xu, S. Y.; Huang, S.; He, Q.; Wang, L. Y. Upconversion nano-phosphores for bioimaging. TrAC Trends Anal. Chem. 2015, 66, 72–79.

    CAS  Google Scholar 

  146. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S. et al. Near-unity photoluminescence quantum yield in MoS2. Science2015, 350, 1065–1068.

    CAS  Google Scholar 

  147. Neupane, G. P.; Tran, M. D.; Yun, S. J.; Kim, H.; Seo, C.; Lee, J.; Han, G. H.; Sood, A. K.; Kim, J. Simple chemical treatment to n-dope transition-metal dichalcogenides and enhance the optical and electrical characteristics. ACS Appl. Mater. Interfaces2017, 9, 11950–11958.

    CAS  Google Scholar 

  148. Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter2015, 27, 313201.

    Google Scholar 

  149. Li, Z.; Chang, S. W.; Chen, C. C.; Cronin, S. B. Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Res. 2014, 7, 973–980.

    CAS  Google Scholar 

  150. You, B. Q.; Wang, X. C.; Zheng, Z. D.; Mi, W. B. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: A first-principles study. Phys. Chem. Chem. Phys. 2016, 18, 7381–7388.

    CAS  Google Scholar 

  151. Rasmussen, F. A.; Thygesen, K. S. Computational 2D materials database: Electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C2015, 119, 13169–13183.

    CAS  Google Scholar 

  152. Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B2016, 94, 035125.

    Google Scholar 

  153. Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E. Y.; Wang, Y. W.; Cao, A. N.; Liu, Y. F.; Wang, H. F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201–210.

    CAS  Google Scholar 

  154. Wang, K.; Ruan, J.; Song, H.; Zhang, J. L.; Wo, Y.; Guo, S. W.; Cui, D. X. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 2011, 6, 8.

    Google Scholar 

  155. Teo, W. Z.; Chng, E. L. K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem.–Eur. J. 2014, 20, 9627–9632.

    CAS  Google Scholar 

  156. Latiff, N. M.; Teo, W. Z.; Sofer, Z.; Fisher, A. C.; Pumera, M. The cytotoxicity of layered black phosphorus. Chem.–Eur. J. 2015, 21, 13991–13995.

    CAS  Google Scholar 

  157. Ahadian, S.; Estili, M.; Surya, V. J.; Ramón-Azcón, J. R.; Liang, X. B.; Shiku, H.; Ramalingam, M.; Matsue, T.; Sakka, Y. et al. Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale2015, 7, 6436–6443.

    CAS  Google Scholar 

  158. Pattammattel, A.; Kumar, C. V. Kitchen chemistry 101: Multigram production of high quality biographene in a blender with edible proteins. Adv. Funct. Mater. 2015, 25, 7088–7098.

    CAS  Google Scholar 

  159. Wang, D.; Song, L.; Zhou, K. Q.; Yu, X. J.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A2015, 3, 14307–14317.

    CAS  Google Scholar 

  160. Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.

    Google Scholar 

  161. Hu, G. F.; Yang, L. L.; Li, Y.; Wang, L. Y. Continuous and scalable fabrication of stable and biocompatible MOF@SiO2 nanoparticles for drug loading. J. Mater. Chem. B2018, 6, 7936–7942.

    CAS  Google Scholar 

  162. Huang, S.; Liu, J.; He, Q.; Chen, H. L.; Cui, J. B.; Xu, S. Y.; Zhao, Y. L.; Chen, C. Y.; Wang, L. Y. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Res. 2015, 8, 4038–4047.

    CAS  Google Scholar 

  163. Randviir, E. P.; Brownson, D. A. C.; Banks, C. E. A decade of graphene research: Production, applications and outlook. Mater. Today2014, 17, 426–432.

    CAS  Google Scholar 

  164. Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale2014, 6, 10394–10403.

    CAS  Google Scholar 

  165. Chen, J. S.; Doane, T. L.; Li, M. X.; Zang, H. D.; Maye, M. M.; Cotlet, M. 0D–2D and 1D–2D semiconductor hybrids composed of all inorganic perovskite nanocrystals and single-layer graphene with improved light harvesting. Part. Part. Syst. Charact. 2018, 35, 1700310.

    Google Scholar 

  166. Kiriya, D.; Hijikata, Y.; Pirillo, J.; Kitaura, R.; Murai, A.; Ashida, A.; Yoshimura, T.; Fujimura, N. Systematic study of photoluminescence enhancement in monolayer molybdenum disulfide by acid treatment. Langmuir2018, 34, 10243–10249.

    CAS  Google Scholar 

  167. Kang, D. H.; Jeon, M. H.; Jang, S. K.; Choi, W. Y.; Kim, K. N.; Kim, J.; Lee, S.; Yeom, G. Y.; Park, J. H. Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector. ACS Photonics2017, 4, 1822–1830.

    CAS  Google Scholar 

  168. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

    CAS  Google Scholar 

  169. Neupane, G. P.; Dhakal, K. P.; Lee, H.; Guthold, M.; Joseph, V. S.; Hong, J. D.; Kim, J. Simple method of DNA stretching on glass substrate for fluorescence image and spectroscopy. In Proceedings of the SPIE 8879, Nano-Bio Sensing, Imaging, and Spectroscopy, Jeju, Korea, 2013, pp 88790J.

    Google Scholar 

  170. Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055–3063.

    CAS  Google Scholar 

  171. Nazir, G.; Khan, M. F.; Aftab, S.; Afzal, A. M.; Dastgeer, G.; Rehman, M. A.; Seo, Y.; Eom, J. Gate tunable transport in graphene/MoS2/(Cr/Au) vertical field-effect transistors. Nanomaterials2018, 8, 14.

    Google Scholar 

  172. Shim, J.; Banerjee, S.; Qiu, H.; Smithe, K. K. H.; Estrada, D.; Bello, J.; Pop, E.; Schulten, K.; Bashir, R. Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale2017, 9, 14836–14845.

    CAS  Google Scholar 

  173. Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano.2012, 6, 2904–2916.

    CAS  Google Scholar 

  174. Li, B.; Pan, G.; Avent, N. D.; Lowry, R. B.; Madgett, T. E.; Waines, P. L. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens Bioelectron.2015, 72, 313–319.

    CAS  Google Scholar 

  175. Carey, T.; Cacovich, S.; Divitini, G.; Ren, J. S.; Mansouri, A.; Kim, J. M.; Wang, C. X.; Ducati, C; Sordan, R. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun.2017, 8, 1202.

    Google Scholar 

  176. Kim, J.; Jeerapan, I.; Imani, S.; Cho, T. N; Bandodkar, A.; Cinti, S.; Mercier, P. P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens.2016, 1, 1011–1019.

    CAS  Google Scholar 

  177. Lee, H.; Song, C. Y.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K; Choi, S. H.; Hyeon, T. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv.2017, 3, e1601314.

    Google Scholar 

  178. Alizadeh, A.; Burns, A.; Lenigk, R; Gettings, R; Ashe, J.; Porter, A.; McCaul, M.; Barrett, R.; Diamond, D. et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip2018, 18, 2632–2641.

    CAS  Google Scholar 

  179. Cao, X. Y; Halder, A; Tang, Y Y; Hou, C. Y; Wang, H. Z.; Duus, J. Ø.; Chi, Q. J. Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater. Chem. Front.2018, 2, 1944–1986.

    CAS  Google Scholar 

  180. Yang, J.; Wang, Z.; Wang, F.; Xu, R. J.; Tao, J.; Zhang, S.; Qin, Q. H; Davies, B. L.; Jagadish, C. et al. Atomically thin optical lenses and gratings. Light Sci. Appl.2016, 5, e16046.

    CAS  Google Scholar 

  181. Sasidharan, A.; Panchakarla, L. S.; Sadanandan, A. R.; Ashokan, A.; Chandran, P.; Girish, C. M.; Menon, D.; Nair, S. V.; Rao, C. N. R. et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Small2012, 8, 1251–1263.

    CAS  Google Scholar 

  182. Park, J.; Park, S.; Ryu, S.; Bhang, S. H.; Kim, J.; Yoon, J. K.; Park, Y H.; Cho, S. P.; Lee, S. et al. Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv. Healthc. Mater.2014, 3, 176–181.

    CAS  Google Scholar 

  183. Cheng, C; Nie, S. Q.; Li, S.; Peng, H.; Yang, H.; Ma, L.; Sun, S. D.; Zhao, C. S. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J. Mater. Chem. B2013, 1, 265–275.

    CAS  Google Scholar 

  184. Jasim, D. A.; Murphy, S.; Newman, L.; Mironov, A.; Prestat, E.; McCaffrey, J.; Ménard-Moyon, C; Rodrigues, A. F.; Bianco, A. et al. The effects of extensive glomerular filtration of thin graphene oxide sheets on kidney physiology. ACS Nano2016, 10, 10753–10767.

    CAS  Google Scholar 

  185. Zhang, W. D.; Wang, C; Li, Z. J.; Lu, Z. Z.; Li, Y Y; Yin, J. J.; Zhou, Y T.; Gao, X. F.; Fang, Y; Nie, G. J. et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater.2012, 24, 5391–5397.

    CAS  Google Scholar 

  186. Chia, H. L.; Latiff, N. M.; Sofer, Z.; Pumera, M. Cytotoxicity of group 5 transition metal ditellurides (MTe2; M=V, Nb, Ta). Chem. -Eur. J.2018, 24, 206–211.

    CAS  Google Scholar 

  187. Guiney, L M.; Wang, X.; Xia, T; Nel, A. E.; Hersam, M. C. Assessing and mitigating the hazard potential of two-dimensional materials. ACS Nano2018, 12, 6360–6377.

    CAS  Google Scholar 

  188. Shareena, T. P. D.; McShan, D.; Dasmahapatra, A. K; Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett.2018, 10, 53.

    Google Scholar 

  189. Latiff, N; Teo, W. Z.; Sofer, Z.; Huber, Š.; Fisher, A. C; Pumera, M. Toxicity of layered semiconductor chalcogenides: Beware of interferences. RSC Adv.2015, 5, 67485–67492.

    CAS  Google Scholar 

  190. Liu, T; Shi, S. X.; Liang, C; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano2015, 9, 950–960.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from Australian Research Council (ARC) (No. DP180103238), the National Natural Science Foundation of China (Nos. 61904113 and 61775147), and Science and Technology Innovation Commission Shenzhen (No. JCYJ20180305125616770).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guru Prakash Neupane, Yunzhou Xue or Yuerui Lu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, G.P., Zhang, L., Yildirim, T. et al. A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Res. 13, 1–17 (2020). https://doi.org/10.1007/s12274-019-2585-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2585-3

Keywords

Navigation