Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population

Abstract

Genome-wide association studies (GWAS) had discovered several genetic risk loci for IgA nephropathy (IgAN), where the susceptibility genes of CARD9 and HORMAD2 for IgAN were also implicated in inflammatory bowel disease (IBD), suggesting a shared genetic etiology of these two diseases. The aim of this study is to explore the common susceptibility loci between IgAN and IBD and provide evidences to elucidate the shared pathogenesis between these two autoimmune diseases. Nineteen single-nucleotide polymorphisms (SNPs) associated with IBD in Asian populations were selected through the National Human Genome Research Institute (NHGRI) GWAS Catalog, and 2078 IgAN patients and 2085 healthy individuals of Chinese Han ancestry were included in the two-stage case-control association study. Serum levels of complement factor B (CFB) and complement split product C3a were detected by enzyme-linked immunosorbent assay (ELISA). One significant shared association at rs4151657 (OR = 1.28, 95%CI = 1.13–1.45, P= 1.42 × 10−4) was discovered between these two diseases, which implicated CFB as a susceptibility gene for IgAN. Genotype-phenotype correlation analysis found significant association of the rs4151657-C allele with decreased serum C3 levels. In addition, the rs4151657-C allele was also associated with higher CFB levels and C3a levels, which suggested a certain degree of systemic complement activation in IgAN patients with the rs4151657-CT or CC genotypes. Our study identified one risk locus (CFB) shared by IgAN and IBD, and genetic variants of CFB may affect complement activation and associate with the predisposition to IgAN.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, et al. IgA nephropathy. Nat Rev Dis Prim. 2016;2:16001.

    PubMed  Google Scholar 

  2. Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol. 2005;16:2088–97.

    PubMed  CAS  Google Scholar 

  3. D'Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol. 2004;24:179–96.

    PubMed  Google Scholar 

  4. Geddes CC, Rauta V, Gronhagen-Riska C, Bartosik LP, Jardine AG, Ibels LS, et al. A tricontinental view of IgA nephropathy. Nephrol Dial Transplant. 2003;18:1541–8.

    PubMed  Google Scholar 

  5. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8:e1002765.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet. 2011;44:178–82.

    PubMed  Google Scholar 

  8. Li M, Foo JN, Wang JQ, Low HQ, Tang XQ, Toh KY, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun. 2015;6:7270.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Coppo R, Amore A, Hogg R, Emancipator S. Idiopathic nephropathy with IgA deposits. Pediatr Nephrol. 2000;15:139–50.

    PubMed  CAS  Google Scholar 

  12. Coppo R. The intestine-renal connection in IgA nephropathy. Nephrol Dial Transplant. 2015;30:360–6.

    PubMed  CAS  Google Scholar 

  13. Terasaka T, Uchida HA, Umebayashi R, Tsukamoto K, Tanaka K, Kitagawa M, et al. The possible involvement of intestine-derived IgA1: a case of IgA nephropathy associated with Crohn's disease. BMC Nephrol. 2016;17:122.

    PubMed  PubMed Central  Google Scholar 

  14. Filiopoulos V, Trompouki S, Hadjiyannakos D, Paraskevakou H, Kamperoglou D, Vlassopoulos D. IgA nephropathy in association with Crohn's disease: a case report and brief review of the literature. Ren Fail. 2010;32:523–7.

    PubMed  Google Scholar 

  15. Ambruzs JM, Walker PD, Larsen CP. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol. 2014;9:265–70.

    PubMed  Google Scholar 

  16. Asano K, Matsushita T, Umeno J, Hosono N, Takahashi A, Kawaguchi T, et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet. 2009;41:1325–9.

    PubMed  CAS  Google Scholar 

  17. Yang SK, Hong M, Zhao W, Jung Y, Tayebi N, Ye BD, et al. Genome-wide association study of ulcerative colitis in Koreans suggests extensive overlapping of genetic susceptibility with Caucasians. Inflamm Bowel Dis. 2013;19:954–66.

    PubMed  Google Scholar 

  18. Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, et al. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut. 2014;63:80–7.

    PubMed  CAS  Google Scholar 

  19. Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A genome-wide association study identifies 2 susceptibility Loci for Crohn's disease in a Japanese population. Gastroenterology. 2013;144:781–8.

    PubMed  CAS  Google Scholar 

  20. Juyal G, Negi S, Sood A, Gupta A, Prasad P, Senapati S, et al. Genome-wide association scan in north Indians reveals three novel HLA-independent risk loci for ulcerative colitis. Gut. 2015;64:571–9.

    PubMed  CAS  Google Scholar 

  21. Jung ES, Cheon JH, Lee JH, Park SJ, Jang HW, Chung SH, et al. HLA-C*01 is a Risk Factor for Crohn's Disease. Inflamm Bowel Dis. 2016;22:796–806.

    PubMed  Google Scholar 

  22. Okada Y, Yamazaki K, Umeno J, Takahashi A, Kumasaka N, Ashikawa K, et al. HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for ulcerative colitis but reduces risk for Crohn's disease. Gastroenterology. 2011;141:864–71.

    PubMed  CAS  Google Scholar 

  23. Xu R, Feng S, Li Z, Fu Y, Yin P, Ai Z, et al. Polymorphism of DEFA in Chinese Han population with IgA nephropathy. Hum Genet. 2014;133:1299–309.

    PubMed  CAS  Google Scholar 

  24. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11:193–206.

    PubMed  Google Scholar 

  25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Liu H, Irwanto A, Tian H, Fu X, Yu Y, Yu G, et al. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am J Hum Genet. 2012;91:935–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. De Jager PL, Graham R, Farwell L, Sawcer S, Richardson A, Behrens TW, et al. The role of inflammatory bowel disease susceptibility loci in multiple sclerosis and systemic lupus erythematosus. Genes Immun. 2006;7:327–34.

    PubMed  Google Scholar 

  28. Floege J, Daha MR. IgA nephropathy: new insights into the role of complement. Kidney Int. 2018;94:16–8.

    PubMed  CAS  Google Scholar 

  29. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, et al. Current Understanding of the Role of Complement in IgA Nephropathy. J Am Soc Nephrol. 2015;26:1503–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Haas M. Histology and immunohistology of IgA nephropathy. J Nephrol. 2005;18:676–80.

    PubMed  Google Scholar 

  31. McCoy RC, Abramowsky CR, Tisher CC. IgA nephropathy. Am J Pathol. 1974;76:123–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Miyazaki R, Kuroda M, Akiyama T, Otani I, Tofuku Y, Takeda R. Glomerular deposition and serum levels of complement control proteins in patients with IgA nephropathy. Clin Nephrol. 1984;21:335–40.

    PubMed  CAS  Google Scholar 

  33. Hiemstra PS, Gorter A, Stuurman ME, Van Es LA, Daha MR. Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol. 1987;17:321–6.

    PubMed  CAS  Google Scholar 

  34. Gros P, Milder FJ, Janssen BJ. Complement driven by conformational changes. Nat Rev Immunol. 2008;8:48–58.

    PubMed  CAS  Google Scholar 

  35. Kim SJ, Koo HM, Lim BJ, Oh HJ, Yoo DE, Shin DH, et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One. 2012;7:e40495.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Pan M, Zhang J, Li Z, Jin L, Zheng Y, Zhou Z, et al. Increased C4 and decreased C3 levels are associated with a poor prognosis in patients with immunoglobulin A nephropathy: a retrospective study. BMC Nephrol. 2017;18:231.

    PubMed  PubMed Central  Google Scholar 

  37. Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity. 2010;32:14–27.

    PubMed  CAS  Google Scholar 

  38. Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7:159–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Park JS, Kim SH, Kim K, Jin CH, Choi KY, Jang J, et al. Inhibition of notch signalling ameliorates experimental inflammatory arthritis. Ann Rheum Dis. 2015;74:267–74.

    PubMed  CAS  Google Scholar 

  40. Murea M, Park JK, Sharma S, Kato H, Gruenwald A, Niranjan T, et al. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int. 2010;78:514–22.

    PubMed  CAS  Google Scholar 

  41. Dees C, Zerr P, Tomcik M, Beyer C, Horn A, Akhmetshina A, et al. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396–404.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Ostvik AE, Granlund A, Gustafsson BI, Torp SH, Espevik T, Mollnes TE, et al. Mucosal toll-like receptor 3-dependent synthesis of complement factor B and systemic complement activation in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:995–1003.

    PubMed  Google Scholar 

  43. Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Epithelial deposition of immunoglobulin G1 and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology. 1990;98:1264–71.

    PubMed  CAS  Google Scholar 

  44. Zimmermann-Nielsen E, Gronbaek H, Dahlerup JF, Baatrup G, Thorlacius-Ussing O. Complement activation capacity in plasma before and during high-dose prednisolone treatment and tapering in exacerbations of Crohn's disease and ulcerative colitis. BMC Gastroenterol. 2005;5:31.

    PubMed  PubMed Central  Google Scholar 

  45. Okamoto R, Tsuchiya K, Nemoto Y, Akiyama J, Nakamura T, Kanai T, et al. Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2009;296:G23–35.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to all the study participants. This work was supported by the National Key Research and Development Project of China (No. 2016YFC0906101), the Operational Grant of Guangdong Provincial Key Laboratory of China (No. 2017B030314019), the Guangdong Provincial Programme of Science and Technology of China (No. 2017A050503003; No. 2017B020227006), National Natural Science Foundation of China (No. 81770661; No. 81570599), the Guangzhou Municipal Science and Technology Project of China (No. 201704020167; No. 2016201604030005; No. 201807010002), and the Young and Middle-aged Talents Program of The First Affiliated Hospital, Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Zhong, Z., Wang, M. et al. Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 65, 241–249 (2020). https://doi.org/10.1038/s10038-019-0699-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-019-0699-9

This article is cited by

Search

Quick links