Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different effects of the deletion of angiotensin converting enzyme 2 and chronic activation of the renin-angiotensin system on muscle weakness in middle-aged mice

Abstract

Inhibition of the renin-angiotensin system (RAS) has been shown to alleviate muscle atrophy both under pathological conditions and during physiological aging. We recently reported that the deletion of angiotensin converting enzyme 2 (ACE2), which converts Angiotensin II to Angiotensin-(1–7) in mice, leads to the early manifestation of aging-associated muscle weakness along with the increased expression of p16INK4a, a senescence-associated gene, and increased central nuclei in the tibialis anterior (TA) muscle in middle age. As ACE2 is multifunctional and functions beyond its role in the RAS, we investigated whether activation of the RAS primarily contributes to muscle weakness in ACE2 knockout (KO) mice by comparing these mice to Tsukuba hypertensive (TH) mice that overproduce human angiotensin II. The grip strength of young (6 months) and middle-aged (15 months) TH mice was consistently lower than that of wild-type mice at the same ages. Middle-aged TH mice were continuously lean with extremely reduced adiposity. Central nuclei in the gastrocnemius (GM) muscle were increased in ACE2KO mice, while no apparent morphological change was observed in the GM muscles of TH mice. Increased expression of p16INK4a along with alterations in the expression of several sarcopenia-associated genes were observed in the GM muscles of ACE2KO mice but not TH mice. These findings suggest that chronic overactivation of the RAS does not primarily contribute to the early aging phenotypes of skeletal muscle in ACE2KO mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Doherty TJ. Aging and sarcopenia. J Appl Physiol. 2003;95:1717–27.

    CAS  PubMed  Google Scholar 

  2. Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone. 2017;105:276–86.

    PubMed  Google Scholar 

  3. Cabello-Verrugio C, Morales MG, Cabrera D, Vio CP, Brandan E. Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles. J Cell Mol Med. 2012;16:752–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev. 2015;35:437–63.

    CAS  PubMed  Google Scholar 

  5. Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med. 2007;13:204–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Elbaz M, Yanay N, Aga-Mizrachi S, Brunschwig Z, Kassis I, Ettinger K, et al. Losartan, a therapeutic candidate in congenital muscular dystrophy: studies in the dy2J/dy2J mouse. Ann Neurol. 2012;71:699–708.

    CAS  PubMed  Google Scholar 

  7. Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C, Simmers JL, et al. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med. 2011;3:82ra37.

    PubMed  PubMed Central  Google Scholar 

  8. Yabumoto C, Akazawa H, Yamamoto R, Yano M, Kudo-Sakamoto Y, Sumida T, et al. Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression. Sci Rep. 2015;5:14453.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F, Song K, et al. Angiotensin II induces skeletal muscle atrophy by activating TFEB-mediated MuRF1 expression. Circ Res. 2015;117:424–36.

    PubMed  PubMed Central  Google Scholar 

  10. Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest. 2005;115:451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida T, Semprun-Prieto L, Sukhanov S, Delafontaine P. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression. Am J Physiol Heart Circ Physiol. 2010;298:H1565–1570.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang F, Yang JM, Zhang YT, Dong M, Wang SX, Zhang Q, et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol. 2014;11:413–26.

    CAS  PubMed  Google Scholar 

  13. Cisternas F, Morales MG, Meneses C, Simon F, Brandan E, Abrigo J, et al. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci. 2015;128:307–19.

    CAS  PubMed  Google Scholar 

  14. Jose Acuna M, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, et al. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet. 2014;23:1237–49.

    Google Scholar 

  15. Morales MG, Abrigo J, Acuna MJ, Santos RA, Bader M, Brandan E, et al. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Models Mechanisms. 2016;9:441–9.

    CAS  Google Scholar 

  16. Morales MG, Abrigo J, Meneses C, Simon F, Cisternas F, Rivera JC, et al. The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-beta 1 induced by AngII in mouse skeletal muscle. Clin Sci. 2014;127:251–64.

    CAS  PubMed  Google Scholar 

  17. Morales MG, Olguin H, Di Capua G, Brandan E, Simon F, Cabello-Verrugio C. Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Clin Sci. 2015;129:461–76.

    CAS  PubMed  Google Scholar 

  18. Takeshita H, Yamamoto K, Nozato S, Takeda M, Fukada SI, Inagaki T, et al. Angiotensin-converting enzyme 2 deficiency accelerates and angiotensin 1-7 restores age-related muscle weakness in mice. J Cachexia Sarcopenia Muscle. 2018;9:975–86.

    PubMed  PubMed Central  Google Scholar 

  19. Lee ASJ, Anderson JE, Joya JE, Head SI, Pather N, Kee AJ, et al. Aged skeletal muscle retains the ability to fully regenerate functional architecture. Bioarchitecture. 2013;3:25–37.

    PubMed  PubMed Central  Google Scholar 

  20. Valdez G, Tapia JC, Kang H, Clemenson GD, Gage FH, Lichtman JW, et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA. 2010;107:14863–8.

    CAS  PubMed  Google Scholar 

  21. Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circulation J. 2013;77:301–8.

    CAS  Google Scholar 

  22. Nozato S, Yamamoto K, Takeshita H, Nozato Y, Imaizumi Y, Fujimoto T, et al. Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice. Clin Sci (Lond). 2019;133:2005–18.

    CAS  Google Scholar 

  23. Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, et al. Chimeric renin-angiotensin system demonstrates sustained increase in blood-pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem. 1993;268:11617–21.

    CAS  PubMed  Google Scholar 

  24. Inaba S, Iwai M, Tomono Y, Senba I, Furuno M, Kanno H, et al. Exaggeration of focal cerebral ischemia in transgenic mice carrying human renin and human angiotensinogen genes. Stroke. 2009;40:597–603.

    CAS  PubMed  Google Scholar 

  25. Takeshita H, Yamamoto K, Nozato S, Inagaki T, Tsuchimochi H, Shirai M, et al. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep. 2017;7:42323.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rinnankoski-Tuikka R, Silvennoinen M, Torvinen S, Hulmi JJ, Lehti M, Kivela R, et al. Effects of high-fat diet and physical activity on pyruvate dehydrogenase kinase-4 in mouse skeletal muscle. Nutr Metab. 2012;9:53.

    CAS  Google Scholar 

  27. Kai T, Kino H, Ishikawa K. Role of the renin-angiotensin system in cardiac hypertrophy and renal glomerular sclerosis in transgenic hypertensive mice carrying both human renin and angiotensinogen genes. Hypertension Res-Clin Exp. 1998;21:39–46.

    CAS  Google Scholar 

  28. Nishijo N, Takamine S, Sugiyama F, Kimoto K, Taniguchi K, Horiguchi H, et al. Vascular remodeling in hypertensive transgenic mice. Exp Anim. 1999;48:203–8.

    CAS  PubMed  Google Scholar 

  29. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22:4212–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA. 1996;93:13742–7.

    CAS  PubMed  Google Scholar 

  31. del Campo A, Contreras-Hernandez I, Castro-Sepulveda M, Campos CA, Figueroa R, Tevy MF, et al. Muscle function decline and mitochondria changes in middle age precede sarcopenia in mice. Aging-Us. 2018;10:34–55.

    Google Scholar 

  32. Wilicox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, et al. FOXO3A genotype is strongly associated with human longevity. PNAS. 2008;105:13987–92.

    Google Scholar 

  33. Sandri M, Lin JD, Handschin C, Yang WL, Arany ZP, Lecker SH, et al. PGC-1 alpha a protects skeletal muscle from atrophy by suppressing Fox03 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA. 2006;103:16260–5.

    CAS  PubMed  Google Scholar 

  34. Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 2013;43:12–21.

    CAS  PubMed  Google Scholar 

  35. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98:14440–5.

    CAS  PubMed  Google Scholar 

  36. Edstrom E, Altun M, Hagglund M, Ulfhake B. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol Ser A-Biol Sci Med Sci. 2006;61:663–74.

    Google Scholar 

  37. Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116:2218–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel VB, Bodiga S, Basu R, Das SK, Wang W, Wang Z, et al. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res. 2012;110:1322–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peña Silva RA, Chu Y, Miller JD, Mitchell IJ, Penninger JM, Faraci FM, et al. Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging. Stroke. 2012;43:3358–63.

    PubMed  PubMed Central  Google Scholar 

  40. Yamamoto R, Akazawa H, Fujihara H, Ozasa Y, Yasuda N, Ito K, et al. Angiotensin II type 1 receptor signaling regulates feeding behavior through anorexigenic corticotropin-releasing hormone in hypothalamus. J Biol Chem. 2011;286:21458–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–43.

    CAS  PubMed  Google Scholar 

  42. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, et al. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest. 2013;123:5203–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradere JP, Le Gonidec S, et al. The exerkine apelin reverses age-associated sarcopenia. Nat Med. 2018;24:1360–71.

    CAS  PubMed  Google Scholar 

  44. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–89.

    CAS  PubMed  Google Scholar 

  45. Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136:872–82.

    CAS  PubMed  Google Scholar 

  46. Lin QS, Keller RS, Weaver B, Zisman LS. Interaction of ACE2 and integrin beta 1 in failing human heart. Biochimica Et Biophysica Acta-Mol Basis Dis. 2004;1689:175–8.

    CAS  Google Scholar 

  47. Clarke NE, Fisher MJ, Porter KE, Lambert DW, Turner AJ. Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PLoS ONE. 2012;7:e34747.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Morales MG, Abrigo J, Meneses C, Cisternas F, Simon F, Cabello-Verrugio C. Expression of the Mas receptor is upregulated in skeletal muscle wasting. Histochem Cell Biol. 2015;143:131–41.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are most grateful to Hikari Kitamura, Yuka Nakao, Yoshinori Koishi, and Tomoko Sato for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Yamamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeshita, H., Yamamoto, K., Mogi, M. et al. Different effects of the deletion of angiotensin converting enzyme 2 and chronic activation of the renin-angiotensin system on muscle weakness in middle-aged mice. Hypertens Res 43, 296–304 (2020). https://doi.org/10.1038/s41440-019-0375-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-019-0375-7

Keywords

This article is cited by

Search

Quick links