Skip to main content
Log in

Synthesis of alumina support and effect of its properties on thiophene hydrodesulfurization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A number of alumina supports were synthesized by using a homogeneous sol–gel precipitation technique. The role of organic additive and its effect on surface active sites as well as textural properties have been analyzed. The support was characterized by N2 adsorption–desorption, X-ray diffraction (XRD). fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal gravimetric and differential scanning calorimetry analysis (TGA/DSC). The surface functional group characterization was carried out by using isopropanol (IPA) as a probe molecule for the acid–base site identification. The solid was used as support for a catalyst and to compare active metal site genesis as a supported catalyst where thiophene reaction was carried out, and activity was compared with the commercial alumina support. The characterization results indicated that the pore enlarging agent (poly (ethylene) glycol, PEG) improve not only textural properties but also significantly modified surface properties, which was evident during the hydrodesulfurization (HDS) of thiophene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rana MS, Ancheyta J, Maity SK, Marroquin G (2008) Int J Oil Gas Coal Technol 1(3):250

    CAS  Google Scholar 

  2. Ancheyta J, Rana MS, Furimsky E (2005) Catal Today 109(1):3

    CAS  Google Scholar 

  3. Rana MS, Samano V, Ancheyta J, Diaz JAI (2007) Fuel 86:1216

    CAS  Google Scholar 

  4. Dhar GM, Srinivas BN, Rana MS, Kumar M, Maity SK (2003) Catal Today 86(1–4):45

    CAS  Google Scholar 

  5. Speight JG (2014) The chemistry and technology of petroleum, 5th edn. Boca Raton, CRC Press

    Google Scholar 

  6. Riazi MR, Rana MS, Pena JD (2013) Chapter 3: in Petroleum Refining and Natural Gas Processing ASTM Manual 58. West Conshohocken, ASTM International Edt, pp 33–78

    Google Scholar 

  7. Rana MS, Ancheyta J, Rayo P, Maity SK (2004) Catal Today 98:151

    CAS  Google Scholar 

  8. Leyva C, Rana MS, Trejo F, Ancheyta J (2007) Ind Eng Chem Res 46:7448

    CAS  Google Scholar 

  9. Luck F (1991) Bull Des Soc Chim Belg 100(11–12):781

    CAS  Google Scholar 

  10. Cejka J (2003) Appl Catal A 254:327

    CAS  Google Scholar 

  11. Badoga S, Sharma RV, Dalai AK, Adjaye J (2015) Appl Catal A 489:86

    CAS  Google Scholar 

  12. Brinker CJ, Scherer GW (1990) Sol–Gel science: the physics and chemistry of sol–gel processing. Academic, New York

    Google Scholar 

  13. Tousi R-SS, Szpunar JA (2013) Int J Hydrogen Energy 38(2):795

    Google Scholar 

  14. Ananthakumar S, Manohar P, Warrier KGK (2004) Ceram Int 30(6):837

    CAS  Google Scholar 

  15. Araki J, Wada M, Kuga S (2001) Langmuir 17(1):21

    CAS  Google Scholar 

  16. Zheng Y, Song J, Xu X, He M, Wang Q, Yan L (2014) Ind Eng Chem Res 53:10029

    CAS  Google Scholar 

  17. Bingre R, Louis B, Nguyen P (2018) Catalysts 8:163

    CAS  Google Scholar 

  18. Ward DA, Ko EI (1996) Ind Eng Chem Res 34:421

    Google Scholar 

  19. Zhu Z, Liu H, Sun H, Yang D (2009) Microporous Mesoporous Mater 123(1–3):39

    CAS  Google Scholar 

  20. Lambert CK, Gonzalez RD (1999) Mater Lett 38(2):145

    CAS  Google Scholar 

  21. Su A, Zhou Y, Yao Y, Yang C, Du H (2012) Microporous Mesoporous Mater 159:36

    CAS  Google Scholar 

  22. Liu X, Truitt RE (1997) J Am Chem Soc 119(41):9856

    CAS  Google Scholar 

  23. Liu X (2008) J Phys Chem C 112(13):5066

    CAS  Google Scholar 

  24. Acikgoz M, Harrell J, Pavanello M (2018) J Phys Chem C 122(44):25314

    CAS  Google Scholar 

  25. Zeng WM, Gao L, Guo JK (1998) Nanostruct Mater 10(4):543

    CAS  Google Scholar 

  26. Kumagai M, Messing GL (1985) J Am Ceram Soc 68(9):500

    CAS  Google Scholar 

  27. Varma HK, Mani TV, Damodaran AD, Warrier KG, Balachandran U (1994) J Am Ceram Soc 77(6):1597

    CAS  Google Scholar 

  28. Padmaja P, Pillai PK, Warrier KGK, Padmanabhan M (2004) J Porous Mater 11(3):147

    CAS  Google Scholar 

  29. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    CAS  Google Scholar 

  30. Trimm DL, Stanislaus A (1986) Appl Catal 21:215

    CAS  Google Scholar 

  31. Halabi MA, Stanislaus A, Al-Zaid H (1993) Appl Catal A 101:117

    Google Scholar 

  32. Ying ZS, Gevert B, Otterstedt JE, Sterte J (1995) Ind Eng Chem Res 34(5):1566

    CAS  Google Scholar 

  33. Knozinger H, Ratnasamy P (1978) Catal Rev Sci Eng 17:31

    Google Scholar 

  34. Chu M, Rahaman MN, De Jonghe LC, Brook RJ (1991) J Am Ceram Soc 74(6):1217

    CAS  Google Scholar 

  35. Ananthakumar S, Krishnapriya G, Damodaran AD, Warrier KGK (1998) Mater Lett 35(1–2):95

    CAS  Google Scholar 

  36. Haghnazari N, Abdollahifar M, Jahani F (2014) J Mex Chem Soc 58(2):95–98

    CAS  Google Scholar 

  37. Li G, Liu Y, Liu D, Liu L, Liu C (2010) Mater Res Bull 45(10):1487

    CAS  Google Scholar 

  38. Xue L, Wei J, Zhang D, Li X, Liu X (2015) J Porous Mater 22(4):1119

    CAS  Google Scholar 

  39. Landry CC, Pappe N, Mason MR, Apblett AW, Tyler AN, MacInnes AN, Barron AR (1995) J Mater Chem 5:331

    CAS  Google Scholar 

  40. Koch W, Friedlander SK (1990) J Colloid Interface Sci 140(2):419

    CAS  Google Scholar 

  41. Zhou Y, Pervin F, Biswas MA, Rangari VK, Jeelani S (2006) Mater Lett 60(7):869

    CAS  Google Scholar 

  42. Wu SH, Wang FY, Ma CCM, Chang WC, Kuo CT, Kuan HC (2001) J Chen Mater Lett 49(6):327

    CAS  Google Scholar 

  43. Trejo F, Rana MS, Ancheyta J (2011) Ind Eng Chem Res 50(5):2715

    CAS  Google Scholar 

  44. Nguefack M, Popa AF, Rossignol S, Kappenstein C (2003) Phys Chem Chem Phys 5:4279

    CAS  Google Scholar 

  45. Raybaud P, Digne M, Iftimie R, Wellens W, Euzen P, Toulhoat H (2001) J Catal 201:236

    CAS  Google Scholar 

  46. Nasser H, Redey A, Yuzhakova T, Toth ZN, Ollár T (2007) React Kinet Catal Lett 92(2):329–335

    CAS  Google Scholar 

  47. Kaluza L, Karban J, Gulkova D (2019) React Kinet Mech Catal 127(2):887–902

    CAS  Google Scholar 

  48. Varga Z, Szarvas T, Tetenyi P, Hancsok J, Ollar T (2017) React Kinet Mech Catal 124(1):61–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan S. Rana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 10983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlSairafi, S.H., AlNajdi, N., AlSheeha, H. et al. Synthesis of alumina support and effect of its properties on thiophene hydrodesulfurization. Reac Kinet Mech Cat 129, 297–313 (2020). https://doi.org/10.1007/s11144-019-01706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01706-6

Keywords

Navigation