Skip to main content
Log in

Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this paper we studied the efficiency of magnesium oxide (MgO) nanoparticles with an average size of 27 nm synthesized by a simple soft chemical method, in killing both Gram negative and Gram positive pathogenic bacteria. The antibacterial activity was determined by a minimum inhibitory concentration technique, agar cup method and live count technique. These nanoparticles show the maximum antibacterial activity towards Bacillus sp. in comparison with Escherichia coli. Transmission electron microscopy analyses of the treated-bacterial strains showed a morphological deformation with increased cell wall disruption. From the analysis of the antibacterial activity of MgO nanoparticles it is revealed that \(6\,\upmu \hbox {g ml}^{-1}\) of dose is sufficient for killing Bacillus sp. whereas it is \(7.5\,\upmu \hbox {g ml}^{-1}\) for E. coli. These doses may be used in medical application. MgO nanoparticles could be used as antibacterial agents after completion of successful in vivo trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Webster T J and Taylor E 2011 Int. J. Nanomedicine 6 1463

    Article  Google Scholar 

  2. Anagnostakos K, Hitzler P, Pape D, Kohn D and Kelm J 2008 Acta Orthop. 2 302

    Article  Google Scholar 

  3. Sonia B H, Deshpandea M P, Bhatt V S, Chaki H S and Kaheria H 2011 Appl. Sci. Res. 3 173

    Google Scholar 

  4. Wei-Wen L, Azizan A, Piao C S, Md Rahman A and Tye C T 2011 New Carbon Mater. 26 255

    Article  Google Scholar 

  5. Saber F S and Dizgah A A 2013 J. Phys. 2 319

    Google Scholar 

  6. Koper O B, Lagadic I, Volodin A and Klabunde K J 1996 Chem. Mater. 9 2468

    Article  Google Scholar 

  7. Koper O B, Klabunde J S, Marchin G L, Klabunde K J and Stoimenov P L 2002 Curr. Microbiol. 44 49

    Article  CAS  Google Scholar 

  8. Jin T and He Y 2011 J. Nanopart. Res. 13 6877

    Article  CAS  Google Scholar 

  9. Kaviyarasu K and Devarajan P A 2011 Der Pharma Chem. 3 248

    CAS  Google Scholar 

  10. Carabineiro S A C, Bogdanchikova N, Pestryakov A, Tavares P B, Fernandes L S G and Figueiredo J L 2011 Nanoscale Res. Lett. 6 435

    Article  Google Scholar 

  11. Sun J, Wang S, Zhao D, Hun H F, Weng L and Liu H 2011 Cell Biol. Toxicol. 27 333

    Article  Google Scholar 

  12. Mathai E, Chandy S, Thomas K, Antoniswamy B, Joseph I and Mathai M 2008 PubMed 13 41

    Google Scholar 

  13. Hawser S P, Bouchillon S K, Hoban D J, Badal R E, Hsueh P R and Paterson D L 2009 EPub 53 3280

    CAS  Google Scholar 

  14. Ginawi I, Saleem M, Vaish A K, Ahmad I, Srivastava K V, Fahad A et al 2014 JCDR 8 81

    CAS  Google Scholar 

  15. Tikhomirov E 1987 PubMed 3 148

    Google Scholar 

  16. Tamilselvi P, Yelilarasi A, Muthusamy H and Anbarasan R 2013 Nano Bull. 2 130106

    Google Scholar 

  17. Elliot S R 1987 Adv. Phys. 2 135

    Article  Google Scholar 

  18. Efros A L 1981 Phil. Mag. B 43 829

    Article  CAS  Google Scholar 

  19. Ghosh M, Barman A, de S K and Chatterjee S 1998 J. Appl. Phys. 84 806

    Article  CAS  Google Scholar 

  20. Meenakshi Devi S, Rajarajan M, Susai R, Kennedy Robert Z and Brindha G 2012 Nanotechnology 50 10618

    Google Scholar 

  21. Huang L, Li D Q, Lin Y J, Wei M, Evans G D and Duan X 2005 J. Inorg. Biochem. 99 986

    Article  CAS  Google Scholar 

  22. Lin C, Juanni C, Zhongwei L, Hancheng W, Huikuan Y and Wei D 2018 Front. Microbiol. 9 790

    Article  Google Scholar 

  23. Tang Z X and Lv B F 2014 Braz. J. Chem. Eng. 31 591

    Article  Google Scholar 

  24. Yiping H, Shakuntala I, Sue R, Andrew G, Strobaugh T P Jr et al 2016 J. Nanobiotechnol. 14 54

    Article  Google Scholar 

  25. Berger T, Sterrer M, Stankic S, Bernardi J, Diwald O and Knozinger E 2013 Mater. Sci. Eng. C 25 664

    Article  Google Scholar 

  26. Wagner J K, Setayeshgar S, Sharon L A, Reilly J P and Brun Y V 2006 Proc. Natl. Acad. Sci. 103 521

    Google Scholar 

  27. Holtje J V 1998 Mol. Biol. Rev. 62 181

    Article  CAS  Google Scholar 

  28. Vollmer W and Bertsche U 2008 Biophys. Acta 9 1714

    Article  Google Scholar 

  29. Kruse T, Møller-Jensen J and Gerdes K 2003 EMBO J. 22 5283

    Article  CAS  Google Scholar 

  30. Karczmarek A, Martínez A R and Blaauwen den T 2007 Microbiology 65 51

    CAS  Google Scholar 

  31. Avanzato P C, Follieri M J and Banerjeem A I 2009 J. Compos. Mater. 43 897

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been accomplished under the funding of C.O.E. of National Institute of Technology, Durgapur and Botany Department of B.B. College, Asansol. The authors concede the principal assistance accepted from the above organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, J., Pandey, S. & Basu, S. Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bull Mater Sci 43, 25 (2020). https://doi.org/10.1007/s12034-019-1963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1963-5

Keywords

Navigation