Skip to main content
Log in

Titanium-doped carbon and boron nitride nanocages (Ti–\(\hbox {C}_{48}\) and Ti–\(\hbox {B}_{24}\hbox {N}_{24}\)) as catalysts for \(\hbox {ClO} + 1/2\hbox {O}_{2} \rightarrow \hbox {ClO}_{2}\) reaction: theoretical study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The performances of Ti-doped carbon and boron nitride nanocages towards chloride monoxide (ClO) oxidation were examined. Details of mechanisms of oxidation of ClO on Ti-doped carbon and boron nitride nanocages were examined. Ti atoms of Ti–\(\hbox {C}_{48}\) and Ti–\(\hbox {B}_{24}\hbox {N}_{24}\) show catalytic activity towards ClO adsorption with low-barrier energies. Results displayed that the Ti-doped carbon and boron nitride nanocages oxidized ClO by the mechanisms of Eley–Rideal (ER) and Langmuir–Hinshelwood (LH). Catalytic activities in the LH path were limited by irremediable adsorption of chloride dioxide (\(\hbox {ClO}_{2}\)) on Ti–\(\hbox {C}_{48}\) and Ti–\(\hbox {B}_{24}\hbox {N}_{24}\). While, in the ER path, the first and second \(\hbox {ClO}_{2}\) were separated, directly. Finally, the results proved that the Ti–\(\hbox {C}_{48}\) and Ti–\(\hbox {B}_{24}\hbox {N}_{24}\) show suitable catalytic abilities towards ClO oxidation via the ER path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805

    Article  Google Scholar 

  2. Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664

    Article  CAS  Google Scholar 

  3. Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S et al 2013 ACS Nano 7 5235

    Article  CAS  Google Scholar 

  4. Bernardi M, Ataca C and Grossman M J C 2016 Nanophotonics 5 111

    Google Scholar 

  5. Jin W, Yeh P-C, Zaki N, Zhang D and Sadowski J T 2013 Phys. Rev. Lett. 111 106801

    Article  Google Scholar 

  6. Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R et al 2013 ACS Nano 7 2898

    Article  CAS  Google Scholar 

  7. Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213

    Article  Google Scholar 

  8. Tang Q and Zhou Z 2013 Prog. Mater. Sci. 58 1244

    Article  CAS  Google Scholar 

  9. Wang Q H, Zadeh K K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699

    Article  CAS  Google Scholar 

  10. Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147

    Article  CAS  Google Scholar 

  11. Chang K and Chen W 2011 ACS Nano 5 472

    Google Scholar 

  12. Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A et al 2013 Science 340 1311

    Article  CAS  Google Scholar 

  13. Shanmugam M, Bansal T, Durcan C A and Yu B 2012 12th IEEE Conference on Nanotechnology

  14. Zong X, Wu G, Yan H, Ma G, Shi J, Wen F et al 2010 J. Phys. Chem. C 114 1963

    Article  CAS  Google Scholar 

  15. Xiang Q, Yu J and Jaroniec M 2012 J. Am. Chem. Soc. 134 6575

    Article  CAS  Google Scholar 

  16. Dalrymple B J, Mroczkowski S and Prober D E 1986 J. Cryst. Growth 74 575

    Article  CAS  Google Scholar 

  17. Hofmann W K, Lewerenz H J and Petienkofer C 1988 Sol. Energy Mater. 17 165

    Article  CAS  Google Scholar 

  18. Xu K, Wang F, Wang Z, Zhan X, Wang Q, Cheng Z et al 2014 ACS Nano 8 8468

    Article  CAS  Google Scholar 

  19. Tan C, Zhao W, Chaturvedi A, Fei Z, Zeng Z, Chen J et al 2016 Small 12 1866

    Article  CAS  Google Scholar 

  20. Tedstone A A, Lewis D J and O’Brien P 2016 Chem. Mater. 28 1965

    Article  CAS  Google Scholar 

  21. Zhang Y, Liu K, Wang F, Shifa T A, Wen Y, Wang F et al 2017 Nanoscale 9 5641

    Article  CAS  Google Scholar 

  22. Rao C N R and Nag A 2010 Eur. J. Inorg. Chem. 2010 4244

    Article  Google Scholar 

  23. Matte H S S R, Gomathi A, Manna A K, Datta R, Pati S K, Rao C N et al 2010 Angew. Chem. 122 4153

    Article  Google Scholar 

  24. Deepak F L, Mayoral A and Yacaman M J 2009 Mater. Chem. Phys. 118 392

    Article  CAS  Google Scholar 

  25. Duan X, Wang C, Shaw J C, Cheng R, Chen Y et al 2014 Nat. Nanotechnol. 9 1024

    Article  CAS  Google Scholar 

  26. Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J et al 2014 Nano Lett. 14 3185

    Article  CAS  Google Scholar 

  27. Pourabbas B and Jamshidi B 2008 Chem. Eng. J. 138 55

    Article  CAS  Google Scholar 

  28. Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272

    Article  CAS  Google Scholar 

  29. Chetia L, Kalita D and Ahmed G A 2017 J. Photochem. Photobiol. 338 134

    Article  CAS  Google Scholar 

  30. Kumar R, Verzhbitskiy I and Eda G 2015 IEEE J. Quantum Electron. 51 1

    Article  Google Scholar 

  31. Razavi R, Hosseini S M A and Ranjbar M 2014 Iran J. Chem. Chem. Eng. 33 29

  32. Razavi R, Kardani M N, Ghanbari A, Lariche M J and Baghban A 2018 Petrol. Sci. Technol. 36 807

    Article  CAS  Google Scholar 

  33. Parsaee Z, Karachi N and Razavi R 2018 Ultrason. Sonochem. 47 36

    Article  CAS  Google Scholar 

  34. Zahedifar M, Razavi R and Sheibani H 2016 J. Mol. Struct. 1125 730

    Article  CAS  Google Scholar 

  35. Karachi N, Hosseini M, Parsaee Z and Razavi R 2018 J. Photochem. Photobiol. 364 344

    Article  CAS  Google Scholar 

  36. Bie R J, Siddiqui M K, Razavi R, Taherkhani M and Najafi M 2018 Acta Chim. Slov. 65 303

    Article  CAS  Google Scholar 

  37. Sharifian S, Harasek M and Haddadi B 2016 Chem. Prod. Process Model. 11 67

    Article  CAS  Google Scholar 

  38. Sharifian S and Harasek M 2015 Chem. Eng. Trans. 45 409

    Google Scholar 

  39. Sharifian S, Asasian Kolur N and Harasek M 2019 Energy Sources 1 11

    Google Scholar 

  40. Afshar A, Hosseini M S and Behzadfar E 2014 Sci. Iran., Trans. D 21 2107

  41. Hosseini S A, Gorjian M, Rasouli L and Shirali S 2015 Biosci. Biotechnol. Res. Asia 12 141

  42. Ebrahimi A, Hosseini S A and Rahim F 2014 Cent. Eur. J. Immunol. 39 400

    Article  Google Scholar 

  43. Rahim F, Allahmoradi H, Salari F, Shahjahani M, Fard A D, Hosseini S A et al 2013 Int. J. Hematol. Oncol. Stem Cell Res. 7 41

Download references

Acknowledgements

The research was supported by the Scientific Research Fund of Heilongjiang Education Department (No. 1353ZD002) and the Science and Technology Plan Projects of Mudanjiang (No. Z2017g0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, C., Zhang, Z., Cai, X. et al. Titanium-doped carbon and boron nitride nanocages (Ti–\(\hbox {C}_{48}\) and Ti–\(\hbox {B}_{24}\hbox {N}_{24}\)) as catalysts for \(\hbox {ClO} + 1/2\hbox {O}_{2} \rightarrow \hbox {ClO}_{2}\) reaction: theoretical study. Bull Mater Sci 43, 28 (2020). https://doi.org/10.1007/s12034-019-1983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1983-1

Keywords

Navigation