Skip to main content
Log in

Investigating the role of amides on the textural and optical properties of mesoporous-nanostructured \(\uptheta \)-\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous-nanostructured \(\uptheta \)-\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\) was synthesized by an autoclaving technique using different amides i.e., formamide (F), dimethyl formamide (DMF) and diethyl formamide (DEF) at \(150^{\circ }\hbox {C}/24\,\hbox {h}\) followed by calcination at \(1000^{\circ }\hbox {C}\). Crystallization and structural behaviour of the as-synthesized materials were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The porosity study was carried out by \(\hbox {N}_{{2}}\) adsorption–desorption (BET) technique. Microstructural features were measured by transmission electron microscopy (TEM). The amide-based solvents played a deliberate role in microstructural and textural features of \(\uptheta \)-\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\). The DMF-based solvent showed an enhanced surface area of \(158\,\hbox {m}^{2}\,\hbox {g}^{-1}\). The as-prepared \(\uptheta \)-\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\) rendered a nano-sheet, nano-rod and nano-flake like morphology for F, DMF and DEF derived products, respectively. From the UV–Vis spectroscopic measurement, the estimated band-gap of \(\uptheta \)-\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\) was found to be 5.16–5.40 eV. Photoluminescence investigation further revealed blue emission particularly for excitation at a wavelength of 252 nm. A DMF-derived sample rendered the lowest band gap due to its smaller crystallite size and higher surface area compared to that of F- and DEF-derived samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Misra C 1986 ACS Monogr. Ser. 184 133

    CAS  Google Scholar 

  2. Cortright R D, Davda R R and Dumesic J A 2002 Nature 418 964

    Article  CAS  Google Scholar 

  3. Argo A M, Odzak J F, Lai F S and Gates B C 2002 Nature 415 623

    Article  CAS  Google Scholar 

  4. Saha D and Das S 2018 Trans. Indian Ceram. Soc. 77 138

    Article  CAS  Google Scholar 

  5. Shen S, Ng W K, Chia L S O, Dong Y C and Tan R B H 2012 Cryst. Growth Des. 12 4987

    Article  CAS  Google Scholar 

  6. Yang F, Wang Q, Yan J, Fang J, Zhao J and Shen W 2012 Ind. Eng. Chem. Res. 51 15386

    Article  CAS  Google Scholar 

  7. Mo S D and Ching W Y 1998 Phys. Rev. B: Condens. Matter. 57 15219

    Article  CAS  Google Scholar 

  8. Gangwar J, Gupta B K, Tripathi S K and Srivastava A K 2015 Nanoscale 7 13313

    Article  CAS  Google Scholar 

  9. Gangwar J, Gupta B K, Kumar P, Tripathi S K and Srivastava A K 2014 Dalton Trans. 43 17034

    Article  CAS  Google Scholar 

  10. Lodziana Z, Topsoe N Y and Norskov J K 2004 Nat. Mater. 3 289

    Article  CAS  Google Scholar 

  11. Ghosh S, Roy M and Naskar M K 2014 Cryst. Growth Des. 14 2977

    Article  CAS  Google Scholar 

  12. Ghosh S and Naskar M K 2013 J. Am. Ceram. Soc. 96 1698

    Article  CAS  Google Scholar 

  13. Sangwichien C, Aranovich G L and Donohue M D 2002 Colloids Surf. A 206 313

    Article  CAS  Google Scholar 

  14. Borrows A D, Cassar K, Friend R M W, Mahon M F, Rigby S P and Warren J E 2005 CrystEngComm 7 548

    Article  Google Scholar 

  15. Rekker R 1979 Eur. J. Med. Chem. 14 479

    CAS  Google Scholar 

  16. Yang Q 2010 Inorg. Mater. 46 953

    Article  CAS  Google Scholar 

  17. Bell T E, Gonzaalez-Carballo J M, Tooze R P and Torrente-Murciano L 2015 J. Mater. Chem. A 3 6196

    Article  CAS  Google Scholar 

  18. Ghosh S, Das R and Naskar M K 2016 J. Am. Ceram. Soc. 99 2273

    Article  CAS  Google Scholar 

  19. Lupulescu A I, Kumar M and Rimer J D 2013 J. Am. Chem. Soc. 135 6608

    Article  CAS  Google Scholar 

  20. Lee C K, Cho E, Lee H S, Seol K S and Han S 2007 Phys. Rev. B: Condens. Matter. 76 245110

    Article  Google Scholar 

  21. Deotale A J and Nandedkar R V 2016 Mater. Today: Proc. 3 2069

    Google Scholar 

  22. Mondal S, Sudhu S, Bhattacharya S and Saha S K 2015 J. Phys. Chem. C 119 27749

    Article  CAS  Google Scholar 

  23. Yu Z Q, Chang D, Li C, Zhang N, Feng Y Y and Dai Y Y 2001 J. Mater. Res. 16 1890

    Article  CAS  Google Scholar 

  24. Chang C C, Wu J L, Yang N H, Lin S J and Chang S Y 2012 CrystEngComm 14 1117

    Article  CAS  Google Scholar 

  25. Toshima R, Miyamaru H, Asahara J, Murasawa T and Takahashi A 2002 J. Nucl. Sci. Technol. 39 15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RD is thankful to UGC and SG is thankful to DST-SERB for providing National Postdoctoral Fellowship with project no. PDF/2017/001728. SK is thankful to Academy of Scientific and Innovative Research (AcSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Kanti Naskar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1060 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Kundu, S., Das, R. et al. Investigating the role of amides on the textural and optical properties of mesoporous-nanostructured \(\uptheta \)-\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\). Bull Mater Sci 43, 15 (2020). https://doi.org/10.1007/s12034-019-1989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1989-8

Keywords

Navigation