Skip to main content
Log in

Antibacterial activity of ZnO nanoflowers deposited on biodegradable acrylic acid hydrogel by chemical bath deposition

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the first part of this study, acrylic acid (AA) hydrogels were produced by a free radical reaction. Chemical and morphological structures of AA-hydrogels were specified by using Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) techniques. In the second part of the study, ZnO nanoflowers were synthesized on the AA-hydrogel by using a chemical bath deposition (CBD) technique for the first time in the literature. The AA-hydrogel acted as the substrate in the CBD process. The deposition time effect on the morphological properties of ZnO nanoflowers was determined by applying SEM. According to the SEM results, the deposition time in the production of ZnO nanoflowers has played a vital role in the surface morphology. Chemical, morphological and thermal properties of the ZnO nanoflowers were determined by applying FT-IR, scanning electron microscopy-energy dispersive X-ray spectroscopy and thermogravimetric analysis techniques. Elemental mapping of ZnO nanostructures was carried out using SEM. The antibacterial activity of the ZnO nanoflower-deposited AA-hydrogel was determined against Gram-negative and Gram-positive bacteria. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used as test microorganisms. Gram-negative bacteria were more resistant to hydrogels and ZnO nanoflowers compared to Gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matei A, Cernica I, Cadar O, Roman C and Schiopu V 2008 Int. J. Mater. Form. 1 767

    Article  Google Scholar 

  2. Priyanka G, Brian P, David W B, Wenjie H, William P J and Anne J A 2009 J. Biol. Eng. 3 1

    Article  Google Scholar 

  3. Emami-Karvani Z and Chehrazi P 2011 Afr. J. Microbiol. Res. 5 1368

    CAS  Google Scholar 

  4. Rai M, Yadav A and Gade A 2009 Biotechnol. Adv. 27 76

    Article  CAS  Google Scholar 

  5. Rizwan W, Young-Soon K, Amrita M, Soon-Il Y and Hyung-Shik S 2010 J. Nanoscale Res. Lett. 5 1675

    Article  Google Scholar 

  6. Sawai J and Yoshikawa T 2003 J. Microbiol. Methods 54 177

    Article  CAS  Google Scholar 

  7. Roselli M, Finamore A, Garaguso I, Britti M S and Mengheri E 2003 J. Nutr. 133 4077

    Article  CAS  Google Scholar 

  8. Mohsen J and Zahra B 2008 Afr. J. Biotechnol. 7 4926

    Google Scholar 

  9. Laura K A, Delina Y L and Pedro J J A 2006 J. Water Resour. 40 3527

    Google Scholar 

  10. Sobha K, Surendranath K, Meena V, Jwala K T, Swetha N and Latha K S M 2010 J. Biotechnol. Mol. Biol. Rev. 5 1

    CAS  Google Scholar 

  11. Reddy K M, Kevin F, Jason B, Denise G W, Cory H and Alex P 2007 J. Appl. Phys. Lett. 90 1

    Google Scholar 

  12. Wahid F, Yin J J, Xue D D, Xue H, Lu Y S, Zhong C et al 2016 Int. J. Biol. Macromol. 88 273

    Article  CAS  Google Scholar 

  13. Kalyani G, Anil V G, Bo-Jung C and Yong-Chien L 2006 J. Green Chem. 8 1034

    Article  Google Scholar 

  14. Dobrucka R and Długaszewska J 2016 Saudi J. Biol. Sci. 23 517

    Article  CAS  Google Scholar 

  15. Gunalan S, Sivaraj R and Rajendran V 2012 Prog. Nat. Sci.: Mater. Int. 22 693

    Article  Google Scholar 

  16. Talebian N, Amininezhad S M and Doudi M 2013 J. Photochem. Photobiol. B 120 66

    Article  CAS  Google Scholar 

  17. Karunakaran C, Rajeswari V and Gomathisankar P 2011 Mater. Sci. Semicond. Process. 14 133

    Article  CAS  Google Scholar 

  18. Gokmen F O and Bayramgil N P 2017 Eur. Chem. Bull. 6 514

    Article  CAS  Google Scholar 

  19. Temel S, Gokmen F O and Yaman E 2017 Eur. Sci. J. 13 28

    Google Scholar 

  20. Temel S, Gokmen F O and Yaman E 2017 Int. J. Curr. Adv. Res. 6 4646

    Google Scholar 

  21. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M et al 2010 J. Nanopart. Res. 12 1625

    Article  CAS  Google Scholar 

  22. Dincă V, Mocanu A, Isopencu G, Busuioc C, Brajnicov S, Vlad A et al 2018 Arab. J. Chem. (in press)

Download references

Acknowledgements

This work was financially supported by the Scientific Research Project Commission of Bilecik Seyh Edebali University (Project Number is 2017-01.BŞEÜ.28-01). FT-IR and FESEM-EDX-Mapping measurements were performed in Bilecik Seyh Edebali University Central Research Laboratory. The antimicrobial activity tests were performed at Egemikal Environmental Health Laboratory. TG measurements were performed in Hacettepe University Advanced Technologies Application and Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ozge Gokmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, S., Gokmen, F.O. & Yaman, E. Antibacterial activity of ZnO nanoflowers deposited on biodegradable acrylic acid hydrogel by chemical bath deposition. Bull Mater Sci 43, 18 (2020). https://doi.org/10.1007/s12034-019-1967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1967-1

Keywords

Navigation