Skip to main content
Log in

Investigation of optical properties and glass transition temperature of nano-epoxy matrix

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this research work, nanocomposites were synthesized by addition of fractions (0.0, 0.02, 0.04 and 0.06) of multi-wall carbon nanotubes (MWCNTs) to epoxy resin to investigate the optical properties and glass transition temperature. Optical measurement shows that epoxy matrix films have high absorption at the different MWCNTs fractions (0.0, 0.02, 0.04 and 0.06). The optical energy gaps for allowed direct transition were evaluated and found to decrease with increasing film fractions, precisely, from 2.85 to 1.32 eV when fractions increased from 0.0 to 0.06 of the matrix weights that indicated strong shifts at 435–935 nm with increasing fraction. The values of the absorption coefficient and extinction coefficient increased with fractions of MWCNTs while the refractive index and the real part of dielectric constant decreased with the fractions of MWCNTs. Also, the glass transition temperature was investigated and was found to increase with increasing fraction of carbon nanotube in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima S 1991 Nature354 56

    Article  CAS  Google Scholar 

  2. Camponeschi E, Florkowski B, Vance R, Garrett G, Garmestani H and Tannenbaum R 2006 Langmuir22 1858

    Article  CAS  Google Scholar 

  3. Liao Y H, Marietta-Tondin O, Liang Z, Zhang C and Wang B 2004 Mater. Sci. Eng. A385 175

    Article  Google Scholar 

  4. Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E and Price G 2010 Polymer51 1614

    Article  CAS  Google Scholar 

  5. Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett.87 215502

    Article  CAS  Google Scholar 

  6. Chakraborty A K, Plyhm T, Barbezat M, Necola A and Terrasi G P 2011 J. Nanopart. Res.13 6493

    Article  CAS  Google Scholar 

  7. Treacy M M J, Ebbesen, T W and Gibson J M 1996 Nature381 678

    Article  CAS  Google Scholar 

  8. Wong E W, Sheehan P E and Lieber C M 1997 Science277 1971

    Article  CAS  Google Scholar 

  9. Falvo M R, Clary C J, Taylor R M, Chi V, Brooks F P, Washburn S et al 1997 Nature389 582

    Article  CAS  Google Scholar 

  10. Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett.68 1579

    Article  CAS  Google Scholar 

  11. Wilder J W G, Venema L C, Rinzler A G, Smalley R E and Dekker C 1998 Nature391 59

    Article  Google Scholar 

  12. Odom T W, Huang J-L, Kim P and Lieber C M 1998 Nature391 62

    Article  CAS  Google Scholar 

  13. Coleman J N, Khan U, Blau W J and Gun’ko Y K 2006 Carbon44 1624

    Article  CAS  Google Scholar 

  14. Backes E H, Sene T S, Passador F R and Pessan L A 2018 Mater. Res.21 e20170801

    Google Scholar 

  15. Pilawka R, Paszkiewicz S and Rosłaniec Z 2012 Adv. Manuf. Sci. Technol.36 67

    Google Scholar 

  16. Srivastava S, Haridas M and Basu J K 2008 Bull. Mater. Sci.31 213

    Article  Google Scholar 

  17. Ahmed B J, Matty F S and Tomma J H 2016 Ibn Al-Haitham J. Pure Appl. Sci.29 166

    Google Scholar 

  18. Hassanzadeh-Aghdam M K and Jamali J 2019 Bull. Mater. Sci.42 117

    Article  Google Scholar 

  19. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron J et al 2017 Nanomaterials7 74

    Article  Google Scholar 

  20. Humud H R, Najem J M and Khames Q 2017 Iraqi J. Phys.15 55

    Google Scholar 

  21. Giakos G C, Farrahi T, Narayan C, Shrestha S, Quang T, Bandopadhayay D et al 2013 Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring III. In Proceedings of SPIE8723 1I

    Google Scholar 

  22. Al-Saadi T M, Aleabi S H, Al-Obodi E E and Abbas H A-J 2018 J. Phys. Conf. Ser.1003 012102

    Article  Google Scholar 

  23. Sze S M 1981 Physics of semiconductor devices, 2nd edn (New York: John Wiley and Sons, Inc.)

    Google Scholar 

  24. AlMaiyaly B H, Hussein B H and Shaban A H 2018 J. Phys. Conf. Ser.1003 012084

    Article  Google Scholar 

  25. Ray J R, Panchal C J, Desai M S and Trivedi U B 2011 J. Nano Electron. Phys.3 747

    Google Scholar 

  26. Buba A D A and Adelabu J S A 2010 Pac. J. Sci. Technol.11 429

    Google Scholar 

  27. Hussien B H and Khudayer I H 2016 Ibn Al-Haitham J. Pure Appl. Sci.29 41

    Google Scholar 

  28. Kasap S O 2002 Principles of electronic materials and devices, 2nd edn (New York: McGraw-Hill)

  29. Inceoglu B and Yilmazer U 2002 Mater. Res. Soc. Symp. Proc.703 387

    CAS  Google Scholar 

  30. Inceoglu A B and Yilmazer U 2001 MRS Proc.703 1

    Article  Google Scholar 

  31. Kranauskaitė I, Macutkevič J, Borisova A, Martone A, Zarrelli M, Selskis A et al 2017 Lith. J. Phys.57 232

  32. Xie Q, Fu K, Liang S, Liu B, Lu L, Yang X et al 2018 Polymers10 1

    Google Scholar 

  33. Jiang C, Zhang D J, Lin S, Shang X and Ju S 2018 Polym. Compos.39 e1129

    Article  CAS  Google Scholar 

  34. Fu S, Sun Z, Huang P, Li Y and Hu N 2019 Nano Mater. Sci.1 2

    Google Scholar 

  35. Swain S K and Jena I 2010 Asian J. Chem. 22 1

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tagreed M Al-Saadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saadi, T.M., Hussein, B.H. & Aleabi, S.H. Investigation of optical properties and glass transition temperature of nano-epoxy matrix. Bull Mater Sci 43, 32 (2020). https://doi.org/10.1007/s12034-019-2004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-2004-0

Keywords

Navigation