Skip to main content
Log in

Magnetic Properties of Cu2+ Substituted Ni–Zn Nano-Crystalline Ferrites Synthesized in Citrate-Gel Route

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The Nano-crystalline divalent copper ion substituted Ni–Zn ferrites having chemical formula Ni0.5Zn0.5−xCuxFe2O4 (where x = 0.05 to 0.25 in steps of 0.05) were prepared by citrate gel auto-combustion method. The X-ray diffraction study confirmed the single phase spinel cubic structure and the crystallographic studies indicate that the lattice parameter was observed to be decreased with increasing of Cu2+ concentration. Scanning Electron Microscopy was conducted to observe surface morphology and grain size/shape. Magnetic measurements were carried out using Vibrating Sample Magnetometer for magnetization and Impedance analyzer for permeability up to 15 MHz. Magnetization studies revealed that the incorporation of copper into the system modified the exchange interactions leading to gradual decrease in saturation magnetization. Highest saturation magnetization was observed for the base composition Ni0.5Zn0.5CuFe2O4 with 61 emu/g. There was an increase in coercivity and remanence with copper concentration. Frequency and temperature variation of inductance measurements were performed to understand the system behaviour at different threshold limits. Enhancement of initial permeability was observed up to the concentration x = 0.15 and its variation is observed to be grain size dependent. Temperature variation of permeability leads to Curie temperature, which was increased with increasing of Cu2+ concentration. All magnetic characteristics of the present system of nano crystalline ferrites displayed interesting deviations and reasons were well justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.N. Dolia, S. Chander, M.P. Sharma, S. Kumar, Super paramagnetic behaviour of nano-particles of Ni–Cu ferrite. Ind. J. Pure Appl. Phys. 44, 169–172 (2006)

    CAS  Google Scholar 

  2. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Room temperature preparation of nanocrystalline MnCuZn ferrite powder by auto-combustion of nitrate-citrate gels. Key Eng. Mater. 224, 593–596 (2002)

    Article  Google Scholar 

  3. D.S.A. Selvan, S. Shobana, P. Thiruvasagam et al., Evaluation of antimicrobial and antidiabetic activities of Ag@SiO2 core-shell nanoparticles synthesized with diverse shell thicknesses. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01682-w

    Article  Google Scholar 

  4. S. Yuvaraj, A.C. Fernandez, M. Sundararajan, C.S. Dash, P. Sakthivel, Hydrothermal synthesis of ZnO–CdS nanocomposites: structural, optical and electrical behavior. Ceram. Int. 46(1), 391–402 (2019). https://doi.org/10.1016/j.ceramint.2019.08.274

    Article  CAS  Google Scholar 

  5. M. Sundararajan, L.J. Kennedy, U. Aruldoss, S.K. Pasha, J.J. Vijaya, S. Dunn, Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater. Sci. Semicond. Process. 40, 1–10 (2015)

    Article  CAS  Google Scholar 

  6. M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram. Int. 43(1), 540–548 (2017)

    Article  CAS  Google Scholar 

  7. M. Sundararajan, L.J. Kennedy, J.J. Vijaya, Synthesis and characterization of cobalt substituted zinc ferrite nanoparticles by microwave combustion method. J. Nanosci. Nanotechnol. 15(9), 6719–6728 (2015)

    Article  CAS  Google Scholar 

  8. M. Sundararajan, L.J. Kennedy, J.J. Vijaya, U. Aruldoss, Microwave combustion synthesis of Co1−xZnxFe2O4 (0≤x≤0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim. Acta Part A 140, 421–430 (2015)

    Article  CAS  Google Scholar 

  9. A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)

    Article  CAS  Google Scholar 

  10. T. Nakamura, Low-temperature sintering of Ni–Zn–Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168, 285 (1997)

    Article  CAS  Google Scholar 

  11. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J. Magn. Magn. Mater. 251, 316–322 (2002)

    Article  CAS  Google Scholar 

  12. H. Su, H.W. Zhang, X.L. Tang, L.J. Jia, Q.Y. Wen, Sintering characteristics and magnetic properties of NiCuZn ferrites for MLCI applications. Mater. Sci. Eng. B 129, 172–175 (2006)

    Article  CAS  Google Scholar 

  13. Y. Li, J.P. Zhao, J.C. Han, X.D. He, Combustion synthesis and characterization of NiCuZn ferrite powders. Mater. Res. Bull. 40, 981–989 (2005)

    Article  CAS  Google Scholar 

  14. Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, S.R. Liu, R.R. Bian, Estimating the cation distributions in the spinel ferrites Cu0.5−xNi0.5ZnxFe2O4 (0.0≤x≤0.5). J. Magn. Magn. Mater. 324, 1975–1981 (2012)

    Article  CAS  Google Scholar 

  15. Z.X. Yue, L.T. Li, J. Zhou, H.G. Zhang, Z.L. Gui, Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate–citrate gels. Mater. Sci. Eng. B 64, 68–72 (1999)

    Article  Google Scholar 

  16. M.P. Reddy, G. Balakrishnaiah, W. Madhuri, M.V. Ramana, N.R. Reddy, K.S. Kumar, V.R. Murthy, R.R. Reddy, Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J. Phys. Chem. Solids 71, 1373–1380 (2010)

    Article  Google Scholar 

  17. J.Y. Hsu, W.S. Ko, C.J. Chen, The effect of V2O5 on the sintering of NiCuZn ferrite. IEEE Trans. Magn. 31, 3994–3996 (1995)

    Article  CAS  Google Scholar 

  18. J.J. Shrotri, A.D. Kulkarni, C.E. Deshpande, A. Mitra, S.R. Sainkar, P.S. Anil Kumar, S.K. Date, Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method. Mater. Chem. Phys. 59, 1–5 (1999)

    Article  CAS  Google Scholar 

  19. O.F. Caltun, L. Spinub, A.L. Stancua, L.D. Thungb, W. Zhou, Study of the microstructure and of the permeability spectra of NiZnCu ferrites. J. Magn. Magn. Mater. 242, 160 (2002)

    Article  Google Scholar 

  20. S. Bid, S.K. Pardhan, Characterization of crystalline structure of ball-milled nano-Ni–Zn-ferrite by Rietveld method. Mater. Chem. Phys. 84, 291–301 (2004)

    Article  CAS  Google Scholar 

  21. Z. Yue, J. Zhou, L. Li, H. Zhang, Z. Gui, Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000)

    Article  CAS  Google Scholar 

  22. I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)

    Article  CAS  Google Scholar 

  23. D. Venkatesh, M.S.R. Prasad, B.R. Babu, K.V. Ramesh, K. Trinath, Effect of sintering temperature on the micro strain and magnetic properties of Ni–Zn nanoferrites. J. Magn. 20(3), 229–240 (2015)

    Article  Google Scholar 

  24. B.V. Prasad, K.V. Ramesh, A. Srinivas, Structural and magnetic studies on Co–Zn nanoferrite synthesized via sol–gel and combustion methods. Mater. Sci. 37(1), 39–54 (2019)

    CAS  Google Scholar 

  25. M.P. Reddy, W. Madhuri, G. Balakrishnaiah, M.V. Ramana, N.R. Reddy, K.S. Kumar, V.R. Murthy, R.R. Reddy, Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors. Curr. Appl. Phys. 11, 191–198 (2011)

    Article  Google Scholar 

  26. Sundararajan M, Kennedy LJ (2017) Photocatalytic removal of rhodamine B under irradiation of visible light using Co1−xCuxFe2O4 (0≤x≤0.5) nanoparticles. J. Environ. Chem. Eng. 5(4), 4075–4092.

  27. Hossain AA, Rahman ML (2011) Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.50− xCuxZn0.50Fe2O4 ferrites. J. Magn. Magn. Mater. 323(15), 1954–1962.

  28. D. Venkatesh, G. Himavathi, K.V. Ramesh, Structural, magnetic, and electrical properties of Ni0.65Zn0.35−xCuxFe2O4 Nanoferrite System. J. Supercond. Nov. Magn. 28, 2801–2807 (2015)

    Article  CAS  Google Scholar 

  29. D. Venkatesh, K.V. Ramesh, Structural and electrical properties of Cu-doped Ni-Znnanocrystalline ferrites for MLCI applications. Mod. Phys. Lett. B 31(33), 1750318 (2017)

    Article  CAS  Google Scholar 

  30. M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, M. Bououdina, Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chem. Solids 108, 61–75 (2017)

    Article  CAS  Google Scholar 

  31. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addision-Wesley Publishing Company, USA, 1978)

    Google Scholar 

  32. M.S.R. Prasad, B.R. Babu, K.V. Ramesh, K. Trinath, Structural and magnetic studies on chromium substituted Ni–Zn nano ferrite synthesized by citrate gel auto combustion method. J. Supercond. Nov. Magn. 27, 2735–2745 (2014)

    Article  CAS  Google Scholar 

  33. B.R. Babu, M.S.R. Prasad, K.V. Ramesh, Y. Purushotham, Structural and magnetic properties of Ni0.5Zn0.5AlxFe2−xO4 nano ferrite system. Mater. Chem. Phys. 148, 585–591 (2014)

    Article  Google Scholar 

  34. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)

    Article  CAS  Google Scholar 

  35. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Evidence for polaron conduction in nanostructured manganese ferrite. J. Phys. D Appl. Phys. 41, 185005 (2008)

    Article  Google Scholar 

  36. E.W. Gorter, Philips Res. 9, 427 (1954)

    Google Scholar 

  37. L. Néel, C.R. Acad, Sci. Paris. 230, 375 (1950)

    Google Scholar 

  38. A.H. Morrospm, K. Haneda, Magnetic structure of small NiFe2O4 particles. J. Appl. Phys. 52, 2496 (1981)

    Article  Google Scholar 

  39. J. Smit, H.P.J. Wijn, Ferrites (PhilipsTechnical Library, Eindhovan, 1959)

    Google Scholar 

  40. Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290 (1952)

    Article  CAS  Google Scholar 

  41. X.Q. Shen, J. Xiang, F.Z. Song, M.Q. Liu, Characterization and magnetic properties of electrospun Co1−xZnxFe2O4 nanofibers. Appl. Phys. A 99, 189–195 (2010)

    Article  CAS  Google Scholar 

  42. Q. Yu, Y. Su, R. Tursuna, J. Zhang, Synthesis and characterization of low density porous nickel zinc ferrites. RSC Adv. 9, 13173 (2019)

    Article  CAS  Google Scholar 

  43. A. Globus, P. Duplex, Effective anisotropy in polycrystalline materials. Separation of Components. J. Appl. Phys. 39, 727 (1968)

    Article  CAS  Google Scholar 

  44. S.A. Ghodake, U.R. Ghodake, S.R. Sawant, S.S. Suryavanshi, P.P. Bakare, Magnetic properties of NiCuZn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 305, 110–119 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Grants Commission, India, for providing financial assistance through UGC Major Research Project F. No. 42–824/2013 (SR) Dt. 22–03-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Venkatesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, D., Vara Prasad, B.B.V.S., Ramesh, K.V. et al. Magnetic Properties of Cu2+ Substituted Ni–Zn Nano-Crystalline Ferrites Synthesized in Citrate-Gel Route. J Inorg Organomet Polym 30, 2057–2066 (2020). https://doi.org/10.1007/s10904-019-01419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01419-2

Keywords

Navigation