Skip to main content
Log in

Research on sliding angles of water droplets on the hierarchical structured superhydrophobic surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Certain plant leaves, such as the lotus leaf, are known to be superhydrophobic due to the hierarchical structures on the leaf surfaces. In this paper, two kinds of superhydrophobic plants leaves with hierarchical structured surface, including aged lotus and loropetalum chinense leaves, were introduced. Further, the surface structural models were established for the introduced leaves corresponding to their surface micromorphologies. More importantly, the theoretical modes for predicting sliding angles of liquid droplets on the introduced leaf surfaces were formulated. In addition, the role of surface parameters in determining the superhydrophobicity of hierarchical structured leaves was demonstrated effective. The results of this paper could be used as a guidance for designing desired superhydrophobic property of hierarchical surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from the literature [31]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. R. Jain, R. Pitchumani, Fractal model for wettability of rough surfaces. Langmuir 33(28), 7181–7190 (2017)

    Article  Google Scholar 

  2. L. Feng, Z. Yan, X. Shi et al., Anti-icing/frosting and cleaning performance of superhydrophobic aluminum alloys. Appl. Phys. A Mater. Sci. Process. 124(2), 142–80 (2018)

    Article  ADS  Google Scholar 

  3. Y. Song, Y. Liu, B. Zhan et al., Fabrication of bioinspired structured superhydrophobic and superoleophilic copper mesh for efficient oil-water separation. J. Bionic Eng. 14(3), 497–505 (2017)

    Article  Google Scholar 

  4. L. Feng, Y. Zhu, W. Fan et al., Fabrication and correction resistance of superhydrophobic magnesium alloy. Appl. Phys. A Mater. Sci. Process. 120(2), 561–570 (2015)

    Article  ADS  Google Scholar 

  5. I.R. Duran, G. Laroche, Water drop-surface interactions as the basis for the design of anti-fogging surfaces: theory, practice, and applications trends. Adv. Coll. Interface Sci. 263, 68–94 (2019)

    Article  Google Scholar 

  6. B. Wang, J. Wang, D. Chen, Beyond polarization and partition in Melanesian anthropology: A comment on Mosko’s ‘Partible penitents’. Journal of the Royal Anthropological Institute 16(12), 244–2978 (2013)

    Article  Google Scholar 

  7. R. Wang, J. Zhu, K. Meng et al., Bio-inspired superhydrophobic closely packed aligned nanoneedle architectures for enhancing condensation heat transfer. Adv. Funct. Mater. 28(49), 1800634–60 (2018)

    Article  Google Scholar 

  8. L. Li, Y. Bai, L. Li et al., A superhydrophobic smart soating for flexible and wearable sensing electronics. Adv. Mater. 29(43), 1702517–88 (2017)

    Article  Google Scholar 

  9. M.S. Mozumder, A.I. Mourad, H. Pervez et al., Recent developments in multifunctional coatings for solar panel applications: a review. Sol. Energy Mater. Sol. Cells 189, 75–102

    Article  Google Scholar 

  10. Y. Tan, B. Hu, Z. Chu, W. Wu, Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation. Adv. Funct. Mater. 29, 1900266–99 (2019)

    Article  Google Scholar 

  11. Y. Wang, H. Lai, Z. Cheng, H. Zhang, Y. Liu, L. Jiang, Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets. ACS Appl. Mater. Interfaces 11, 10988–10997 (2019)

    Article  Google Scholar 

  12. Y. Gao, T. You, N. Yang, C. Zhang, P. Yin, Superhydrophobic 3D forest-like Ag microball/nanodendrite hierarchical structure as SERS sensors for rapid droplets detection. Government, and Western Ways in a Trobriand Village, Anthropology 2, 91(1978)

    Article  Google Scholar 

  13. Q. Wang, Y. Liu, Y. Bai, S. Yao, Z. Wei, M. Zhang, L. Wang, L. Wang, Superhydrophobic SERS substrates based on silver dendrite-decorated fifilter paper for trace detection of nitenpyram. Anal. Chim Acta 1049, 170–178 (2019)

    Article  ADS  Google Scholar 

  14. M. Li, M. Liu, Y. Yu et al., Laser-structured graphene/reduced graphene oxide films towards bio-inspired superhydrophobic surfaces. Bull. Chem. Soc. Jpn. 92(2), 283–289 (2019)

    Article  Google Scholar 

  15. Z. Yang, X. Liu, Y. Tian, Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J. Colloid Interface Sci. 533, 268–277 (2019)

    Article  ADS  Google Scholar 

  16. H. Li, S.R. Yu, W.X. Xie et al., A study about the influence of single-scale and dual-scale structures on surface wettability. Appl. Phys. A Mater. Sci. Process. 123(5), 374 (2017)

    Article  ADS  Google Scholar 

  17. L. Feng, S.H. Li, Y.S. Li et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002)

    Article  Google Scholar 

  18. M. Miwa, A. Nakajima, A. Fujishima et al., Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13), 5754–5760 (2000)

    Article  Google Scholar 

  19. X. Zhang, Y. Qin, Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface. J. Colloid Interface Sci. 545, 231–241 (2019)

    Article  ADS  Google Scholar 

  20. J. Jeevahan, M. Chandrasekaran, G.B. Joseph et al., Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15(2), 231–250 (2018)

    Article  Google Scholar 

  21. C. Lv, C. Yang, P. Hao et al.,

    Article  Google Scholar 

  22. Y.I. Frenkel, On the behavior of liquid drops on a solid surface. J. Exp. Theor. Phys. 18, 659–667 ()

    Google Scholar 

  23. K. Koch, B. Bhushan, Y.C. Jung et al., Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Mater. 5(7), 1386 (2009)

    Article  ADS  Google Scholar 

  24. T. Rasilainen, M. Suvanto, T.A. Pakkanen, Anisotropically microstructured and micro/nanostructured polypropylene surfaces. Surf. Sci. 603(14), 2240–2247 (2009)

    Article  ADS  Google Scholar 

  25. Y.H. Sun, Z.G. Guo, Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horiz. 4(1), 52–76 (2019)

    Article  ADS  Google Scholar 

  26. J.A. Mascorro, J.J. Bozzola, Processing biological tissues for ultrastructural study. Methods Mol. Biol. 369, 19, 2014

    Article  Google Scholar 

  27. M. Silvestrini, C. Brito, Wettability of reentrant surfaces: a global energy approach. Langmuir 33(43), 12535–12545 (2017)

    Article  Google Scholar 

  28. U.U. Ghosh, S. Nair, A. Das et al., Replicating and resolving wetting and adhesion characteristics of a rose petal. Colloids Surf. A 561, 9–17 (2019)

    Article  ADS  Google Scholar 

  29. T.H. Yen, C.Y. Soong, Hybrid Cassie–Wenzel model for droplets on surfaces with nanoscale roughness. Phys. Rev. E 93(2), 22805 (2016)

    Article  ADS  Google Scholar 

  30. C. Bruel, S. Queffeulou, T. Darlow et al., Experimental methods in chemical engineering: contact angles. Can. J. Chem. Eng. 97(4), 832–842 (2019)

    Article  Google Scholar 

  31. Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant. Sci. 172(6), 1103–1112 (2007)

    Article  Google Scholar 

  32. H. Teisala, H. Butt, Hierarchical structures for superhydrophobic and superoleophobic surfaces. Langmuir ACS J. Surf. Colloids 35(33), 10689–10703 (2019)

    Article  Google Scholar 

  33. W. Kim, D. Kim, S. Park et al., Engineering lotus leaf-inspired micro- and nanostructures for the manipulation of functional engineering platforms. J. Ind. Eng. Chem. 61, 39–52 (2018)

    Article  Google Scholar 

  34. Z.H.W.X. Youfa, Microscopic observations of the lotus leaf for explaining the outstanding mechanical properties. J. Bionic Eng. 9(1), 84–90 (2012)

    Article  Google Scholar 

  35. C. Lee, C.C. Kim, Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25(21), 12812–12818 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Liu, L., Wu, L. et al. Research on sliding angles of water droplets on the hierarchical structured superhydrophobic surfaces. Appl. Phys. A 126, 47 (2020). https://doi.org/10.1007/s00339-019-3137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3137-0

Navigation