Skip to main content
Log in

Effective mass dependence of the gyrotropic nihility in a BaM/6H-SiC multilayer structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigated the magnetic polaritons in a semi-infinite ferrite-semiconductor binary structure at the microwave region of the spectrum. The permittivity and permeability tensors of the structure depend on the various factors including the characteristic frequencies of the semiconductor and ferrite material, the thickness ratio of two layers, the external magnetic flux density and its frequency. By changing these factors, we can control the optical properties to achieve some extraordinary behaviors. By controlling and adjusting some accessible factors, the longitudinal components of both permittivity and permeability tensors simultaneously acquire zero. This region is identified as the gyrotropic nihility region. At this region, the waves can easily pass through this structure as its resistance to the passage of the electromagnetic waves is negligible. In this paper, we have studied the circumstances under which this extraordinary phenomenon may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Ghanbari, M. Salavati-Niasari, Tl4CdI6 Nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorg. Chem. 57(18), 11443–11455 (2018). https://doi.org/10.1021/acs.inorgchem.8b01293

    Article  Google Scholar 

  2. M. Ghanbari, S. Gholamrezaei, M. Salavati-Niasari, Ag2CdI4: synthesis, characterization and investigation the strain lattice and grain size. J. Alloy. Compd. 667, 115–122 (2016)

    Google Scholar 

  3. M. Salavati-Niasari, F. Davar, M.R. Loghman-Estarki, Controllable synthesis of thioglycolic acid capped ZnS (Pn) 0.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloy. Compd. 494(1–2), 199–204 (2010)

    Google Scholar 

  4. M. Salavati-Niasari, A. Amiri, Synthesis and characterization of alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) complexes of bis (salicylaldiminato) hydrazone as catalysts for oxidation of cyclohexene with tert-buthylhydroperoxide. Appl. Catal. A 290(1–2), 46–53 (2005)

    Google Scholar 

  5. M. Salavati-Niasari, F. Davar, In situ one-pot template synthesis (IOPTS) and characterization of copper (II) complexes of 14-membered hexaaza macrocyclic ligand “3, 10-dialkyl-dibenzo-1, 3, 5, 8, 10, 12-hexaazacyclotetradecane”. Inorg. Chem. Commun. 9(2), 175–179 (2006)

    Google Scholar 

  6. M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper (II) complexes. Chem. Lett. 34(2), 244–245 (2005)

    Google Scholar 

  7. M. Ghanbari, M. Bazarganipour, M. Salavati-Niasari, Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Sep. Purif. Technol. 173, 27–36 (2017)

    Google Scholar 

  8. A. Zolanvari, H. Sadeghi, J. Nezamdost, M. Jafari, Magnetic properties of Fe/Metal/Fe trilayer films, in AIP Conference Proceedings, vol 1393, no 1 (AIP, 2011), pp. 73–74

  9. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Nanocrystalline Pr 6 O 11: synthesis, characterization, optical and photocatalytic properties. New J. Chem. 39(5), 3948–3955 (2015)

    Google Scholar 

  10. M.R. Jafari, F. Ebrahimi, M. Nooshirvani, Subwavelength electromagnetic energy transport by stack of metallic nanorings. J. Appl. Phys. 108(5), 054313 (2010)

    ADS  Google Scholar 

  11. M.R. Jafari, M. Omidi, The effect of quantum ring size on shifting the absorption coefficient from infrared region to ultraviolet region. Appl. Phys. A 125(7), 466 (2019)

    ADS  Google Scholar 

  12. M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120(4), 2096–2108 (2016)

    Google Scholar 

  13. Z. Shahedi, M.R. Jafari, A.A. Zolanvari, Synthesis of ZnQ2, CaQ2, and CdQ2 for application in OLED: optical, thermal, and electrical characterizations. J. Mater. Sci. Mater. Electron. 28(10), 7313–7319 (2017)

    Google Scholar 

  14. M.R. Jafari, M. Janghouri, Z. Shahedi, Fabrication of an organic light-emitting diode from new host π electron rich zinc complex. J. Electron. Mater. 46(1), 544–551 (2017)

    ADS  Google Scholar 

  15. M. Noori, M.R. Jafari, S.M. Hosseini, Z. Shahedi, Synthesis of ferrite nickel nano-particles and its role as a p-dopant in the improvement of hole injection of an organic light-emitting diode. J. Electron. Mater. 46(7), 4093–4099 (2017)

    ADS  Google Scholar 

  16. M. Salavati-Niasari, M. Farhadi-Khouzani, F. Davar, Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method. J. Sol–Gel Sci. Technol. 52(3), 321–327 (2009)

    Google Scholar 

  17. H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod. 148, 31–36 (2017)

    Google Scholar 

  18. D. Mills, E. Burstein, Polaritons: the electromagnetic modes of media. Rep. Prog. Phys. 37(7), 817 (1974)

    ADS  Google Scholar 

  19. C. Mavroyannis, Optical excitation spectrum of interacting polariton waves in molecular crystals. Phys. Rev. B 1(8), 3439–3449 (1970). https://doi.org/10.1103/physrevb.1.3439

    Article  ADS  Google Scholar 

  20. V.R. Tuz, Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state. J. Magn. Magn. Mater. 419, 559–565 (2016)

    ADS  Google Scholar 

  21. E.L. Albuquerque, M.G. Cottam, Polaritons in periodic and Quasiperiodic Structures (Elsevier, Amsterdam, 2004)

    Google Scholar 

  22. O.V. Shramkova, Transmission spectra in ferrite-semiconductor periodic structure. Prog. Electromagn. Res. 7, 71–85 (2009)

    Google Scholar 

  23. O. Borovkova et al, Plasmon-excitonic enhancement of the transverse magneto-optical kerr effect in the semiconductor magnetic nanostructures, in 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, (2018), pp. 61–63

  24. N. Abirami, K.J. Wilson, Magneto optical properties of silver doped magnetic nanocomposite material. Sens. Bio-Sens. Res. 16, 37–40 (2017)

    Google Scholar 

  25. J. Wang, G. Yang, X. Ye, R. Sun, C. Yao, Magnetic polaritons enhanced absorption of phosphorene in the near-infrared and visible region. Mater. Sci. Eng. B 226, 24–28 (2017)

    Google Scholar 

  26. V.R. Tuz, V.I. Fesenko, I.V. Fedorin, H.-B. Sun, V.M. Shulga, Crossing and anti-crossing effects of polaritons in a magnetic-semiconductor superlattice influenced by an external magnetic field. Superlattices Microstruct. 103, 285–294 (2017)

    ADS  Google Scholar 

  27. V.R. Tuz, V.I. Fesenko, I.V. Fedorin, H.-B. Sun, W. Han, Coexistence of bulk and surface polaritons in a magnetic-semiconductor superlattice influenced by a transverse magnetic field. J. Appl. Phys. 121(10), 103102 (2017)

    ADS  Google Scholar 

  28. I.V. Fedorin, Electrodynamic properties of a hypercrystal with ferrite and semiconductor layers in an external magnetic field. Superlattices Microstruct. 113, 337–345 (2018)

    ADS  Google Scholar 

  29. Z.-X. Jia, Y. Shuai, S.-D. Xu, H.-P. Tan, Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer. Opt. Express 23(19), A1096–A1110 (2015)

    Google Scholar 

  30. A. Alu, M.G. Silveirinha, A. Salandrino, N.J.P.R.B. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical review B 75(15), 155410 (2007)

    ADS  Google Scholar 

  31. R. Liu et al., Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100(2), 023903 (2008)

    ADS  Google Scholar 

  32. R. Maas, J. Parsons, N. Engheta, A. Polman, Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 7(11), 907 (2013)

    ADS  Google Scholar 

  33. A.R. Davoyan, A.M. Mahmoud, N. Engheta, Optical isolation with epsilon-near-zero metamaterials. Opt. Express 21(3), 3279–3286 (2013)

    ADS  Google Scholar 

  34. Y. Xu, H. Chen, Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl. Phys. Lett. 98(11), 113501 (2011)

    ADS  Google Scholar 

  35. B. Edwards, A. Alù, M.G. Silveirinha, N. Engheta, Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. J. Appl. Phys. 105(4), 044905 (2009)

    ADS  Google Scholar 

  36. I. Liberal, N. Engheta, Near-zero refractive index photonics. Nat. Photonics 11(3), 149 (2017)

    ADS  MATH  Google Scholar 

  37. W. Yan, M. Yan, M. Qiu, Generalized nihility media from transformation optics. J. Opt. 13(2), 024005 (2010)

    ADS  Google Scholar 

  38. V.R. Tuz, Gyrotropic-nihility state in a composite ferrite-semiconductor structure. J. Opt. 17(3), 035611 (2015)

    ADS  Google Scholar 

  39. V.I. Fesenko, V.R. Tuz, Gyrotropic-nihility state in magnetic superlattices, in 2016 IEEE International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE, (2016), pp. 330–333

  40. V.I. Fesenko, I.V. Fedorin, V.R. Tuz, Dispersion regions overlapping for bulk and surface polaritons in a magnetic-semiconductor superlattice. Opt. Lett. 41(9), 2093–2096 (2016)

    ADS  Google Scholar 

  41. V.R. Tuz, V.I. Fesenko, in Contemporary Optoelectronics, Springer Series in Optical Sciences, ed. by O. Shulika, I. Sukhoivanov (Springer, The Netherlands, 2016), vol. 199, pp. 99–113

  42. V.R. Tuz, O.D. Batrakov, Y. Zheng, Gyrotropic-nihility in ferrite-semiconductor composite in Faraday geometry. Prog. Electromagn. Res. 41, 397–417 (2012)

    Google Scholar 

  43. A. Lakhtakia, An electromagnetic trinity from “negative permittivity” and “negative permeability”. Int. J. Infrared Millim. Waves 23(6), 813–818 (2002)

    Google Scholar 

  44. R.E. Collin, Foundations for Microwave Engineering (Wiley, New York, 2007)

    Google Scholar 

  45. L. Nickelson, Plasmonics, in Electromagnetic Theory and Plasmonics for Engineers (Springer, 2019), pp. 611–695

  46. E. Palik, J. Furdyna, Infrared and microwave magnetoplasma effects in semiconductors. Rep. Prog. Phys. 33(3), 1193 (1970)

    ADS  Google Scholar 

  47. J.G. Rivas, Y. Zhang, A. Berrier, Fundamental aspects of surface plasmon polaritons at terahertz frequencies, in Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, 2013), pp. 62–90

  48. F.G. Bass, A.A. Bulgakov, Kinetic and Electrodynamic Phenomena in Classical and Quantum Semiconductor Superlattices (Nova Publishers, Hauppauge, 1997)

    Google Scholar 

  49. T.C. Choy, Effective Medium Theory: Principles and Applications (Oxford University Press, Oxford, 2015)

    Google Scholar 

  50. Z. Chen, A. Yang, S. Yoon, K. Ziemer, C. Vittoria, V. Harris, Growth of Ba-hexaferrite films on single crystal 6-H SiC. J. Magn. Magn. Mater. 301(1), 166–170 (2006)

    ADS  Google Scholar 

  51. Z. Chen et al., Structure and magnetism of Ba-hexaferrite films grown on single crystal 6-H SiC with graduated interfacial MgO buffer layers. IEEE Trans. Magn. 42(10), 2855–2857 (2006)

    ADS  Google Scholar 

  52. M. Wittenauer et al., Growth and characterization of high purity single crystals of barium ferrite. J. Cryst. Growth 130(3–4), 533–542 (1993)

    ADS  Google Scholar 

  53. R. Karim, K. McKinstry, J. Truedson, C. Patton, Frequency dependence of the FMR linewidth in single crystal barium ferrite platelets. IEEE Trans. Magn. 28(5), 3225–3227 (1992)

    ADS  Google Scholar 

  54. Y.-Y. Song, Y. Sun, L. Lu, J. Bevivino, M. Wu, Self-biased planar millimeter wave notch filters based on magnetostatic wave excitation in barium hexagonal ferrite thin films. Appl. Phys. Lett. 97(17), 173502 (2010)

    ADS  Google Scholar 

  55. K.K. Mallick, P. Shepherd, R. Green, Dielectric properties of M-type barium hexaferrite prepared by co-precipitation. J. Eur. Ceram. Soc. 27(4), 2045–2052 (2007)

    Google Scholar 

  56. N. Son et al., Electron effective masses and mobilities in high-purity 6H–SiC chemical vapor deposition layers. Appl. Phys. Lett. 65(25), 3209–3211 (1994)

    ADS  Google Scholar 

  57. W. Chen, N. Son, E. Janzen, D. Hofmann, B. Meyer, Effective masses in SiC determined by cyclotron resonance experiments. Phys. Status Solidi 162(1), 79–93 (1997)

    ADS  Google Scholar 

  58. G. Bulai et al., Structural, magnetic and humidity sensing properties of rare earth doped cobalt ferrite thin films synthesized by pulsed laser deposition. J. Ovonic Res. 14(2), 119–128 (2018)

    MathSciNet  Google Scholar 

  59. J.T. Cheung, H. Sankur, T. Chang, Applications of pulsed laser deposition to optics. Opt. Photonics News 3(6), 24–27 (1992)

    ADS  Google Scholar 

  60. S.S. Prasanna, K. Balaji, S. Pandey, S. Rana, Metal oxide based nanomaterials and their polymer nanocomposites, in Nanomaterials and Polymer Nanocomposites (Elsevier, 2019), pp. 123–144

  61. N. Kehagias et al., Reverse-contact UV nanoimprint lithography for multilayered structure fabrication. Nanotechnology 18(17), 175303 (2007)

    ADS  Google Scholar 

  62. G. Rasic, J. Schwartz, Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Commun. 3(4), 207–211 (2013)

    Google Scholar 

  63. S. Griffith, M. Mondol, D.S. Kong, J.M. Jacobson, Nanostructure fabrication by direct electron-beam writing of nanoparticles. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 20(6), 2768–2772 (2002)

    ADS  Google Scholar 

  64. V. Logeeswaran, M.S. Islam, M.-L. Chan, D.A. Horsley, W. Wu, S.-Y. Wang, Self-assembled microfabrication technology for 3D isotropic negative index material, in Nanophotonics for Communication: Materials, Devices, and Systems III, vol. 6393: (International Society for Optics and Photonics, 2006), p. 639305

  65. S. Matsui, Focused-ion-beam chemical-vapor-deposition (FIB-CVD), in Encyclopedia of Nanotechnology, ed. by B. Bhushan (Springer, Dordrecht, 2012), pp. 866–876

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadi, M., Jafari, M.R. & Shahmansouri, M. Effective mass dependence of the gyrotropic nihility in a BaM/6H-SiC multilayer structure. Appl. Phys. A 126, 49 (2020). https://doi.org/10.1007/s00339-019-3231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3231-3

Navigation