Skip to main content
Log in

Na4Mn9O18 nanowires wrapped by reduced graphene oxide as efficient sulfur host material for lithium/sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we fabricated a sulfur-infiltrated three-dimensional reduced graphene oxide wrapped Na4Mn9O18 nanorods microsphere (NMO/RGO/S) as efficient cathode material lithium/sulfur (Li/S) batteries. The NMO/RGO/S microsphere was developed by spray drying the NMO, GO, and S suspension followed by a hydrazine reduction process. The resulting hierarchical microsphere, constructed by cross-linked NMO nanorods and RGO sheet, shortens the electron/ion diffusion pathway. It also provides adequate void space to accommodate S and mitigate the volume variation during cycling. Additionally, the polar NMO nanorods offer strong chemical adsorption to lithium polysulfides, which was confirmed by adsorption experiment. Owing these features, the NMO/RGO/S electrode exhibited a high specific capacity and good cyclability as well. The initial discharge capacity is 952.8 mAh g−1 at 1 C, and after 500 cycles, a discharge capacity of 520 mAh g−1 is maintained, which corresponds to a capacity fading of 0.09% per cycle. The simple preparation method for the construction of NMO/RGO/S microsphere reported in the study advances the development of efficient cathode materials for Li/S battery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1:16132

    Article  CAS  Google Scholar 

  2. Liu LJ, Chen Y, Zhang ZF, You XL, Walle MD, Li YJ, Liu YN (2016) Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries. J Power Sources 325:301–305

    Article  CAS  Google Scholar 

  3. Seh ZW, Sun YM, Zhang QF, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45:5605–5634

    Article  CAS  Google Scholar 

  4. Nara H, Tsuda S, Osaka T (2018) Techniques for realizing practical application of sulfur cathodes in future. Li-ion batteries Journal of Solid State Electrochemistry 21(7):1925–1937

    Article  Google Scholar 

  5. Wang JL, Meng Z, Yang WT, Yan XF, Guo RN, Han WQ (2019) Facile synthesis of rGO/g-C3N4/CNT microspheres via an ethanol-assisted spray-drying method for high-performance Lithium−sulfur batteries. ACS Appl Mater Interfaces 11:819–827

    Article  CAS  Google Scholar 

  6. Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    Article  CAS  Google Scholar 

  7. Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46(5):1135–1143

    Article  CAS  Google Scholar 

  8. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969–A1976

    Article  CAS  Google Scholar 

  9. Yuan GH, Xiang JM, Jin HF, Jin YZ, Wu LZ, Zhang YG, M A, B Z (2018) Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochim Acta 259:647–654

  10. Hou XY, Liu XM, Lu Y, Cheng JB, Luo RJ, Yu QH, Wei XL, Yan HL, Ji XX, Kim JK, Luo YS (2017) Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries. J Solid State Electrochem 21(2):349–359

    Article  CAS  Google Scholar 

  11. Blanga R, Goor M, Burstein L, Rosenberg Y, Gladkich A, Logvinuk D, Shechtman I, Golodnitsky D (2016) The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20(12):3393–3404

    Article  CAS  Google Scholar 

  12. Li XG, Rao MM, Li WS (2016) Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium-sulfur battery. J Solid State Electrochem 20(1):153–161

    Article  CAS  Google Scholar 

  13. An YL, Tian Y, Fei HF, Zeng GF, Duan HW, Zhang SH, Zhou P, Ci LJ, Feng JK (2018) Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries. Mater Lett 228:175–178

    Article  CAS  Google Scholar 

  14. Wu SL, Zhang ZY, Lan MH, Yang SR, Cheng JY, Cai JJ, Shen JH, Zhu Y, Zhang KL, Zhang WJ (2018) Lithiophilic cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv Mater 30:1705830

    Article  Google Scholar 

  15. Tian Y, Zhao Y, Zhang YG, Ricardez-Sandoval L, Wang X, Li JD (2019) Construction of oxygen-deficient La(OH)3 Nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high-performance Lithium/sulfur batteries. ACS Applied Materials Interfaces 11(26):23271–23279

    Article  CAS  Google Scholar 

  16. Liu C, Guo WL, Wang QH, Li JG, Yang XP (2016) Parametric study of hydrothermal soft chemical synthesis and application of Na0.44MnO2 nanorods for Li-ion battery cathode materials: synthesis conditions and electrochemical performance. J Alloys Compd 658:588–594

    Article  CAS  Google Scholar 

  17. Wang YH, Zhang YY, Peng YY, Li H, Li JY, Hwang BJ, Zhao JB (2019) Physical confinement and chemical adsorption of porous C/CNT micro/nano-spheres for CoS and Co9S8 as advanced lithium batteries anodes. Electrochim Acta 299:489–499

    Article  CAS  Google Scholar 

  18. Wang N, Chen B, Qin KQ, Liu EZ, Shi CS, He CN, Zhao NQ (2019) Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: a study of synergistic adsorption-electrocatalysis function. Nano Energy 60:332–339

    Article  CAS  Google Scholar 

  19. Hou YP, Mao HZ, Xu LQ (2016) MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res 10:344–353

    Article  Google Scholar 

  20. Pan H, Huang XX, Zhang R, Zhang T, Chen YT, Hoang TKA, Wen GW (2018) Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium–sulfur battery. J Solid State Electrochem 22(11):3557–3568

    Article  CAS  Google Scholar 

  21. Li Y, Chen J, Zhang YF, Yu ZY, Zhang TZ, Ge WQ, Zhang LP (2018) NiS2/rGO/S capable of lithium polysulfide trapping as an enhanced cathode material for lithium sulfur batteries. J Alloys Compd 766:804–812

    Article  CAS  Google Scholar 

  22. Li HP, Sun LC, Zhao Y, Tan TZ, Zhang YG (2019) Blackberry-like hollow graphene spheres synthesized by spray drying for high-performance lithium-sulfur batteries. Electrochim Acta 295:822–828

    Article  CAS  Google Scholar 

  23. Li XM, Wolden CA, Ban CM, Yang YG (2015) Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries. ACS Appl Matter Interfaces 7:28444–28451

    Article  CAS  Google Scholar 

  24. Kim JM, Kang YK, Song SW, Suk JD (2019) Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries. Electrochim Acta 299:27–33

    Article  CAS  Google Scholar 

  25. Ma J, Fang Z, Yan Y, Yang ZZ, Gu L, Hu YS, Li H, Wang ZX, Huang XJ (2015) Novel large-scale synthesis of a C/S Nanocomposite with mixed conducting networks through a spray drying approach for Li-S batteries. Adv Energy Mater 5:1500046

    Article  Google Scholar 

  26. Li SH, Wang XH, Xia XH, Wang YD, Wang XL, Tu JP (2017) Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries. Electrochim Acta 227:217–224

    Article  CAS  Google Scholar 

  27. Tan YB, Jia ZQ, Lou PL, Cui ZH, Guo XX (2017) Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries. J Power Sources 341:68–74

    Article  CAS  Google Scholar 

  28. Liu L, Wei YJ, Zhang CF, Zhang C, Li X, Wang JT, Ling LC, Qiao WM, Long DH (2015) Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping. Electrochim Acta 153:140–148

    Article  CAS  Google Scholar 

  29. Chen MQ, Su Z, Jiang K, Pan YK, Zhang YY, Donghui Long DH (2019) Promoting the sulfur immobilization by a hierarchical morphology of hollow carbon nanospheres cluster for high stability Li-S battery. J Mater Chem A 7:6250–6258

    Article  CAS  Google Scholar 

  30. Lu XL, Zhang QF, Wang J, Chen SH, Ge JM, Liu ZM, Wang LL, Ding HB, Gong DC, Yang HG, Yu XZ, Zhu J, Lu BG (2019) High performance bimetal sulfides for lithium-sulfur batteries. Chem Eng J 358:955–961

    Article  CAS  Google Scholar 

  31. Ni J, Jin LM, Xue MZ, Zheng JS, Zheng JP, Zhang CM (2019) TiO2 microboxes as effective polysufide reservoirs for lithium sulfur batteries. Electrochim Acta 296:39–48

    Article  CAS  Google Scholar 

  32. Yu QH, Luo RJ, Bai XL, Yang WC, Lu Y, Hou XY, Peng T, Liu XM, Kim JK (2018) Luo YS rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. J Solid State Electrochem 22(3):849–858

    Article  CAS  Google Scholar 

  33. Maximiliano Z, Tony J, Gustavo MM, Lars G, Cesar AB, Juan B (2019) A top-down approach to build Li2S@rGO cathode composites for high loading lithium-sulfur batteries in carbonate-based electrolyte. Electrochim Acta 296:243–250

    Article  Google Scholar 

  34. Peng HJ, Liang JY, Zhu L, Huang JQ, Cheng XB, Guo XF, Ding WP, Zhu WC, Zhang Q (2014) Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. ACS Nano 8:11280–11289

    Article  CAS  Google Scholar 

  35. Wang JY, Wang WJ, Li HP, Tan TZ, Wang X, Zhao Y (2019) Carbon nanotubes/SiC prepared by catalytic chemical vapor deposition as scaffold for improved lithium-sulfur batteries. J Nanopart Res 6:113

    Article  Google Scholar 

  36. Liu C, Li JG, Zhao PX (2015) Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties. J Nanopart res 17:142

    Article  CAS  Google Scholar 

  37. Fan MQ, An YL, Yin H, Li W, Sun W, Lin Z (2018) Self-assembled reduced graphene oxide/sulfur composite encapsulated by polyaniline for enhanced electrochemistry performance. J Solid State Electrochem 22(3):677–695

    Article  Google Scholar 

  38. Li LY, Zhong BH (2018) The design and preparation of the composite with layered spherical structure for Li-S battery. J Solid State Electrochem 22(2):591–598

    Article  CAS  Google Scholar 

  39. Zhang XQ, Xie D, Wang DH, Yang T, Wang XL, Xia XH, Gu CD, Tu JP (2017) Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. J Solid State Electrochem 21(4):1203–1210

    Article  CAS  Google Scholar 

  40. Li XL, Wang YY, Xu CS, Pan LS (2017) Mesoporous carbon/sulfur composite with. N-doping and tunable pore size for high-performance Li-S batteries Journal of Solid State Electrochemistry 21(4):1101–1109

    CAS  Google Scholar 

  41. Yuan GH, Wang G, Wang H, Bai JT (2015) A novel sulfur/carbon hollow microsphere yolk-shell composite as a high-performance cathode for lithium sulfur batteries. J Solid State Electrochem 19(4):1143–1149

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support from the Outstanding Young Talents Project of Hebei High Education Institutions (BJ2019013), Natural Science Foundation of Hebei Province (B2019202199), and the “Hundred Talents Program” of Hebei Province (E2019050013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingde Li, Yuecheng Zhang or Zisheng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sun, Z., Zhao, Y. et al. Na4Mn9O18 nanowires wrapped by reduced graphene oxide as efficient sulfur host material for lithium/sulfur batteries. J Solid State Electrochem 24, 111–119 (2020). https://doi.org/10.1007/s10008-019-04478-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04478-0

Keywords

Navigation