Skip to main content
Log in

SrnR from Streptomyces griseus is a nickel-binding transcriptional activator

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nickel ions are crucial components for the catalysis of biological reactions in prokaryotic organisms. As an uncontrolled nickel trafficking is toxic for living organisms, nickel-dependent bacteria have developed tightly regulated strategies to maintain the correct intracellular metal ion quota. These mechanisms require transcriptional regulator proteins that respond to nickel concentration, activating or repressing the expression of specific proteins related to Ni(II) metabolism. In Streptomyces griseus, a Gram-positive bacterium used for antibiotic production, SgSrnR and SgSrnQ regulate the nickel-dependent antagonistic expression of two superoxide dismutase (SOD) enzymes, a Ni-SOD and a FeZn-SOD. According to a previously proposed model, SgSrnR and SgSrnQ form a protein complex in which SgSrnR works as repressor, binding directly to the promoter of the gene coding for FeZn-SOD, while SgSrnQ is the Ni(II)-dependent co-repressor. The present work focuses on the determination of the biophysical and functional properties of SgSrnR. The protein was heterologously expressed and purified from Escherichia coli. The structural and metal-binding analysis, carried out by circular dichroism, light scattering, fluorescence and isothermal titration calorimetry, showed that the protein is a well-structured homodimer, able to bind nickel with moderate affinity. DNase I footprinting and β-galactosidase gene reporter assays revealed that apo-SgSrnR is able to bind its DNA operator and activates a transcriptional response. The structural and functional properties of this protein are discussed relatively to its role as a Ni(II)-dependent sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andreini C, Cavallaro G, Lorenzini S, Rosato A (2013) Nucleic Acids Res 41:D312–D319

    Article  CAS  Google Scholar 

  2. Hood MI, Skaar EP (2012) Nat Rev Microbiol 10:525–537

    Article  CAS  Google Scholar 

  3. Chandrangsu P, Rensing C, Helmann JD (2017) Nat Rev Microbiol 15:338–350

    Article  CAS  Google Scholar 

  4. Chivers PT, Sauer RT (2000) J Biol Chem 275:19735–19741

    Article  CAS  Google Scholar 

  5. Iwig JS, Leitch S, Herbst RW, Maroney MJ, Chivers PT (2008) J Am Chem Soc 130:7592–7606

    Article  Google Scholar 

  6. Iwig JS, Rowe JL, Chivers PT (2006) Mol Microbiol 62:252–262

    Article  CAS  Google Scholar 

  7. Musiani F, Zambelli B, Bazzani M, Mazzei L, Ciurli S (2015) Metallomics 7:1305–1318

    Article  CAS  Google Scholar 

  8. Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Mol Microbiol 59:1848–1858

    Article  CAS  Google Scholar 

  9. Kim HM, Ahn BE, Lee JH, Roe JH (2015) Metallomics 7:702–709

    Article  CAS  Google Scholar 

  10. Fridovich I (1995) Annu Rev Biochem 64:97–112

    Article  CAS  Google Scholar 

  11. Johnson F, Giulivi C (2005) Mol Aspects Med 26:340–352

    Article  CAS  Google Scholar 

  12. Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996) Biochem J 318(Pt 3):889–896

    Article  CAS  Google Scholar 

  13. Fee JA (1991) Mol Microbiol 5:2599–2610

    Article  CAS  Google Scholar 

  14. Kim EJ, Chung HJ, Suh B, Hah YC, Roe JH (1998) Mol Microbiol 27:187–195

    Article  CAS  Google Scholar 

  15. Kim EJ, Chung HJ, Suh B, Hah YC, Roe JH (1998) J Bacteriol 180:2014–2020

    Article  CAS  Google Scholar 

  16. Chung HJ, Choi JH, Kim EJ, Cho YH, Roe JH (1999) J Bacteriol 181:7381–7384

    Article  CAS  Google Scholar 

  17. Kim JS, Jang JH, Lee JW, Kang SO, Kim KS, Lee JK (2000) Biochim Biophys Acta 1493:200–207

    Article  CAS  Google Scholar 

  18. Kim HM, Shin JH, Cho YB, Roe JH (2014) Nucleic Acids Res 42:2003–2014

    Article  CAS  Google Scholar 

  19. Kim JS, Kang SO, Lee JK (2003) J Biol Chem 278:18455–18463

    Article  CAS  Google Scholar 

  20. Zambelli B, Uversky VN, Ciurli S (2016) Biochim Biophys Acta 1864:1714–1731

    Article  CAS  Google Scholar 

  21. Bogomolovas J, Simon B, Sattler M, Stier G (2009) Protein Expr Purif 64:16–23

    Article  CAS  Google Scholar 

  22. Zhao Y, Benita Y, Lok M, Kuipers B, van der Ley P, Jiskoot W, Hennink WE, Crommelin DJ, Oosting RS (2005) Vaccine 23:5082–5090

    Article  CAS  Google Scholar 

  23. Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Plasmid 43:59–72

    Article  CAS  Google Scholar 

  24. Karimova G, Ullmann A, Ladant D (2001) J Mol Microbiol Biotechnol 3:73–82

    CAS  PubMed  Google Scholar 

  25. D’Urzo A, Santambrogio C, Grandori R, Ciurli S, Zambelli B (2014) J Biol Inorg Chem 19:1341–1354

    Article  Google Scholar 

  26. Whitmore L, Wallace BA (2008) Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  27. Miraula M, Ciurli S, Zambelli B (2015) J Biol Inorg Chem 20:739–755

    Article  CAS  Google Scholar 

  28. Charlwood PA (1957) J Am Chem Soc 79:776–781

    Article  CAS  Google Scholar 

  29. Pelliciari S, Pinatel E, Vannini A, Peano C, Puccio S, De Bellis G, Danielli A, Scarlato V, Roncarati D (2017) Sci Rep 7:41063

    Article  CAS  Google Scholar 

  30. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) Nucleic Acids Res 43:W389–W394

    Article  CAS  Google Scholar 

  31. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  32. Zambelli B, Musiani F, Ciurli S (2012) Met Ions Life Sci 10:135–170

    Article  CAS  Google Scholar 

  33. Podzimek S (2014) J Appl Polym Sci 131:40111

    Article  Google Scholar 

  34. Lee CW, Chakravorty DK, Chang FM, Reyes-Caballero H, Ye Y, Merz KM Jr, Giedroc DP (2012) Biochemistry 51:2619–2629

    Article  CAS  Google Scholar 

  35. Hellman LM, Fried MG (2007) Nat Protoc 2:1849–1861

    Article  CAS  Google Scholar 

  36. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) FEMS Microbiol Rev 27:145–163

    Article  CAS  Google Scholar 

  37. Zambelli B, Danielli A, Romagnoli S, Neyroz P, Ciurli S, Scarlato V (2008) J Mol Biol 383:1129–1143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Stefano Ciurli for financial support and useful discussion. They also thank Prof. Paolo Neyroz for helpful assistance with fluorescence measurements and examination of the data. This work was supported by the Department of Pharmacy and Biotechnology of the University of Bologna through funds for fundamental research. YB and AZ are recipient of Ph.D. fellowships from the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zambelli.

Ethics declarations

Conflict of interest

The authors declare no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniamino, Y., Pesce, G., Zannoni, A. et al. SrnR from Streptomyces griseus is a nickel-binding transcriptional activator. J Biol Inorg Chem 25, 187–198 (2020). https://doi.org/10.1007/s00775-019-01751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01751-5

Keywords

Navigation