Skip to main content
Log in

Highly conductive dodecaborate/MXene composites for high performance supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the increasingly prominent energy and environmental issues, the supercapacitors, as a highly efficient and clean energy conversion and storage devices, meet the requirements well. However, it is still a challenge to enhance the capacitance and energy density of supercapacitors. A novel and highly conductive dodecaborate/MXene composites have been designed for high performance supercapacitors. The surface charge property of MXene was modified by a simple ultrasonic treatment with ammonium ion, and the dodecaborate ion can be inserted into the inner surface of MXene by electrostatic adsorption. Due to the unique icosahedral cage conjugate structure formed by the B-B bond and the highly delocalized three-dimensional π bond structure of the electrons, the negative charge is delocalied on the whole dodecaborate ion, which reduces the ability to bind to cations. Therefore, the cations can move easily, and the dodecaborate can act as a “lubricant” for ion diffusion between the MXene layers, which significantly improves the ion transfer rate of supercapacitors. The dodecaborate/MXene composites can achieve an extremely high specific capacitance of 366 F.g-1 at a scan rate of 2 mV.s-1, which is more than eight times higher than that of MXene (43 F1-) at the same scan rate. Our finding provides a novel route on the fabrication of the high performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dubai, D. P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev.2015, 44, 1777–1790.

    Article  Google Scholar 

  2. Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res.2014, 7, 209–218.

    Google Scholar 

  3. Yang, Y. B.; Li, P. X.; Wu, S. T.; Li, X. Y.; Shi, E. Z.; Shen, Q. C.; Wu, D. H.; Xu, W. J.; Cao, A. Y.; Yuan, Q. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage. Chem.- Eur. J.2015, 21, 6157–6164.

    Article  CAS  Google Scholar 

  4. Anasori, B.; Lukatskaya, M. R.; Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater.2017, 2, 16098.

    Article  CAS  Google Scholar 

  5. Zhang, X.; Zhang, Z. H.; Zhou, Z. MXene-based materials for electrochemical energy storage. J. Energy Chem.2018, 27, 73–85.

    Article  Google Scholar 

  6. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nano- crystals produced by exfoliation of Ti3AlC2. Adv. Mater.2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  7. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T, MXene). Chem. Mater.2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  8. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater.2014, 26, 992–1005.

    Article  CAS  Google Scholar 

  9. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano2012, 6, 1322–1331.

    Article  CAS  Google Scholar 

  10. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature2014, 516, 78–81.

    Article  CAS  Google Scholar 

  11. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science2013, 341, 1502–1505.

    Article  CAS  Google Scholar 

  12. Dall’Agnese, Y.; Lukatskaya, M. R.; Cook, K. M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun.2014, 48, 118–122.

    Article  Google Scholar 

  13. Hu, M. M.; Li, Z. J.; Zhang, H.; Hu, T.; Zhang, C.; Wu, Z.; Wang, X. H. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. Chem. Commun.2015, 57, 13531–13533.

    Google Scholar 

  14. Scholes, D. T.; Yee, P. Y.; Lindemuth, J. R.; Kang, H.; Onorato, J.; Ghosh, R.; Luscombe, C. K.; Spano, F. C.; Tolbert, S. H.; Schwartz, B. J. The effects of crystallinity on charge transport and the structure of sequentially processed F4TCNQ-doped conjugated polymer films. Adv. Fund. Mater.2017, 27, 1702654.

    Article  Google Scholar 

  15. Zhao, C. J.; Wang, Q.; Zhang, H.; Passerini, S.; Qian, X. Z. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces2016, 8, 15661–15667.

    Article  CAS  Google Scholar 

  16. Zhao, M. Q.; Ren, C. K.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. E.; van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater.2015, 27, 339–345.

    Article  CAS  Google Scholar 

  17. Pitochelli, A. R.; Hawthorne, F. M. The isolation of the icosahedral Bi2H122- ion. Am. Chem. Soc.1960, 82, 3228–3229.

    Article  CAS  Google Scholar 

  18. Spokoyny, A. M. New ligand platforms featuring boron-rich clusters as organomimetic substituents. Pure Appl. Chem.2013, 85, 903–919.

    Article  CAS  Google Scholar 

  19. Sivaev, I. B.; Sjoberg, S.; Bregadze, V. I.; Gabel, D. Synthesis of alkoxy derivatives of dodecahydro-closo-dodecaborate anion [B12H12]2-. Tetrahedron Lett.1999, 40, 3451–3454.

    Article  CAS  Google Scholar 

  20. Hawthorne, M. F.; Pushechnikov, A. Polyhedral borane derivatives: Unique and versatile structural motifs. Pure Appl. Chem.2012, 84, 2279–2288.

    Article  CAS  Google Scholar 

  21. Miller, H. C.; Miller, N. E.; Muetterties, E. L. Chemistry of boranes. XX. syntheses of polyhedral boranes. Inorg. Chem.1964, 3, 1456–1463.

    Article  CAS  Google Scholar 

  22. Geis, V.; Guttsche, K.; Knapp, C.; Scherer, H.; Uzun, R. Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [Bi2Cl12]2-. Dalton Trans.2009, 2687–2694.

    Google Scholar 

  23. Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M. Q.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy2017, 38, 368–376.

    Article  CAS  Google Scholar 

  24. Melanova, K.; Holub, J.; Hynek, J.; Fanfrlik, J.; Benes, L.; Kutalek, P.; Krejcova, A.; Hnyk, D.; Zima, V. Outerly functionalized and non-functionalized boron clusters intercalated into layered hydroxides with different modes of binding: Materials for superacid storage. Dalton Trans.2018, 47, 11669–11679.

    Article  CAS  Google Scholar 

  25. Rude, L. H.; Filsø, U.; D’Anna, V.; Spyratou, A.; Richter, B.; Hino, S.; Zavorotynska, O.; Baricco, M.; Serby, M. H.; Hauback, B. C. et al. Hydrogen-fluorine exchange in NaBFL-NaBF4. Phys. Chem. Chem. Phys.2013, 75, 18185–18194.

    Google Scholar 

  26. Li, Z. Y.; Wang, L. B.; Sun, D. D.; Zhang, Y. D.; Liu, B. Z.; Hu, Q. K.; Zhou, A. G. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B2015, 797, 33–40.

    Article  Google Scholar 

  27. Udovic, T. J.; Matsuo, M.; Tang, W. S.; Wu, H.; Stavila, V.; Soloninin, A. V.; Skoryunov, R. V.; Babanova, O. A.; Skripov, A. V.; Rush, J. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater.2014, 26, 7622–7626.

    Article  CAS  Google Scholar 

  28. Yuan, W. Y.; Cheng, L. F.; An, Y. R.; Wu, H.; Yao, N.; Fan, X. L.; Guo, X. H. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng.2018, 6, 8976–8982.

    Article  CAS  Google Scholar 

  29. Mashtalir, O.; Naguib, M.; Mochalin, V. N; Dall’Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun.2013, 4, 1716.

    Article  Google Scholar 

  30. Hu, M. M.; Hu, T.; Li, Z. J.; Yang, Y.; Cheng, R. R.; Yang, J. X.; Cui, C.; Wang, X. H. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2T, MXene. ACS Nano2018, 12, 3578–3586.

    Article  CAS  Google Scholar 

  31. Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTX MXene electrodes for supercapacitor applications. Chem. Mater.2015, 27, 5314–5323.

    Article  CAS  Google Scholar 

  32. Oñate, J. I.; Garcia, A.; Bellido, V.; Viviente, J. L. Deposition of hydrogenated B-C thin films and their mechanical and chemical characterization. Surf. Coat. Technol.1991, 49, 548–553.

    Article  Google Scholar 

  33. Kerber, S. J.; Bruckner, J. J.; Wozniak, K.; Seal, S.; Hardcastle, S.; Barr, T. L. The nature of hydrogen in X-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. J. Vac. Sci. Technol. A1996, 14, 1314–1320.

    Article  CAS  Google Scholar 

  34. Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Naslund, L.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater.2014, 26, 2374–2381.

    Article  CAS  Google Scholar 

  35. Hu, M. M.; Li, Z. J.; Hu, T; Zhu, S. H.; Zhang, C.; Wang, X. H. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACSNano2016, 10, 11344–11350.

    CAS  Google Scholar 

  36. Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe304/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces2017, 9, 8880–8890.

    Article  CAS  Google Scholar 

  37. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci.2014, 7, 1597–1614.

    Article  CAS  Google Scholar 

  38. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater.2013, 12, 518–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 61674109), the National Key R&D Program of China (No. 2016YFA0202400), the Natural Science Foundation of Jiangsu Province (No. BK20170059), the Beijing Natural Science Foundation (No. 2182061) and Science Foundation of China University of Petroleum, Beijing (No. 2462019BJRC001). This project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxing Li or Zhao-Kui Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ma, C., Wen, Y. et al. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 13, 196–202 (2020). https://doi.org/10.1007/s12274-019-2597-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2597-z

Keywords

Navigation