Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor

Abstract

Streptomyces sp. CHI39, isolated from a rock soil sample, is a producer of abyssomicin I. The taxonomic status was clarified by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Streptomyces fragilis, with similarity of 99.9%. Strain CHI39 comprised LL-diaminopimelic acid, glutamic acid, glycine, and alanine in its peptidoglycan. The predominant menaquinones were MK-9(H6), and major fatty acids were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The chemotaxonomic features matched those described for the genus Streptomyces. Genome sequencing was conducted for strain CHI39 and S. fragilis NBRC 12862T. The results of digital DNA–DNA hybridization along with differences in phenotypic characteristics between the strains suggested strain CHI39 to be a novel species, for which Streptomyces abyssomicinicus sp. nov. is proposed; the type strain is CHI39T (=NBRC 110469T). Next, we surveyed polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters in genomes of S. abyssomicinicus CHI39T and S. fragilis NBRC 12862T. These strains encoded 9 and 12 clusters, respectively, among which only four clusters were shared between them while the others are specific in each strain. This suggests that strains classified to distinct species each harbor many specific secondary metabolite-biosynthetic pathways even if the strains are taxonomically close.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

    Article  CAS  Google Scholar 

  2. Watve MG, Tickoo R, Jog MM, Bhole BD. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 2001;176:386–90.

    Article  CAS  Google Scholar 

  3. Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep. 2009;26:1362–84.

    Article  CAS  Google Scholar 

  4. Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106:3468–96.

    Article  CAS  Google Scholar 

  5. Doroghazi JR, Buckley DH. Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genom. 2014;15:970.

    Article  Google Scholar 

  6. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol. 2007;73:1146–52.

    Article  CAS  Google Scholar 

  7. Komaki H, Ichikawa N, Hosoyama A, Takahashi-Nakaguchi A, Matsuzawa T, Suzuki K, et al. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species. BMC Genom. 2014;15:323.

    Article  CAS  Google Scholar 

  8. Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci Rep. 2018;8:6888.

    Article  CAS  Google Scholar 

  9. Seipke RF. Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS ONE. 2015;10:e0116457.

    Article  CAS  Google Scholar 

  10. Igarashi Y, et al. Abyssomicin I, a modified polycyclic polyketide from Streptomyces sp. CHI39. J Nat Prod. 2010;73:1943–6.

    Article  CAS  Google Scholar 

  11. Bister B, et al. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl. 2004;43:2574–6.

    Article  CAS  Google Scholar 

  12. Keller S, Nicholson G, Drahl C, Sorensen E, Fiedler HP, Sussmuth RD. Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J Antibiot. 2007;60:391–4.

    Article  CAS  Google Scholar 

  13. Niu XM, et al. Abyssomicin E, a highly functionalized polycyclic metabolite from Streptomyces species. Org Lett. 2007;9:2437–40.

    Article  CAS  Google Scholar 

  14. Wang Q, et al. Abyssomicins from the South China Sea deep-sea sediment Verrucosispora sp.: natural thioether Michael addition adducts as antitubercular prodrugs. Angew Chem Int Ed Engl. 2013;52:1231–4.

    Article  CAS  Google Scholar 

  15. Wang X, et al. Bi- and tetracyclic spirotetronates from the coal mine fire isolate Streptomyces sp. LC-6-2. J Nat Prod. 2017;80:1141–9.

    Article  CAS  Google Scholar 

  16. Abdalla MA, Yadav PP, Dittrich B, Schüffler A, Laatsch H. ent-Homoabyssomicins A and B, two new spirotetronate metabolites from Streptomyces sp. Ank 210. Org Lett. 2011;13:2156–9.

    Article  CAS  Google Scholar 

  17. Song Y, et al. Neoabyssomicins A–C, polycyclic macrolactones from the deep-sea derived Streptomyces koyangensis SCSIO 5802. Tetrohedron. 2017;73:5366–72.

    Article  CAS  Google Scholar 

  18. Gottardi EM, et al. Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. ChemBioChem. 2011;12:1401–10.

    Article  CAS  Google Scholar 

  19. Tu J, Li S, Chen J, Song Y, Fu S, Ju J, et al. Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802. Micro Cell Fact. 2018;17:28.

    Article  CAS  Google Scholar 

  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura L. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    Article  CAS  Google Scholar 

  22. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article  CAS  Google Scholar 

  23. Tamura T, Ishida Y, Suzuki K. Descriptions of Actinoplanes ianthinogenes nom. rev. and Actinoplanes octamycinicus corrig. comb. nov., nom. rev. Int J Syst Evol Microbiol. 2011;61:2916–21.

    Article  CAS  Google Scholar 

  24. Minnikin DE, et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods. 1984;2:233–41.

    Article  CAS  Google Scholar 

  25. Hamada M, Iino T, Iwami T, Harayama S, Tamura T, Suzuki K. Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (Masters et al. 1995) as Austwickia chelonae gen. nov., comb. nov. J Gen Appl Microbiol. 2010;56:427–36.

    Article  CAS  Google Scholar 

  26. Yassin AF, Haggenei B, Budzikiewicz H, Schaal KP. Fatty acid and polar lipid composition of the genus Amycolatopsis: application of fast atom bombardment-mass spectrometry to structure analysis of underivatized phospholipids. Int J Syst Bacteriol. 1993;43:414–20.

    Article  CAS  Google Scholar 

  27. Komaki H, et al. Draft genome sequence of Streptomyces sp. MWW064 for elucidating the rakicidin biosynthetic pathway. Stand Genom Sci. 2016;11:83.

    Article  CAS  Google Scholar 

  28. Ohtsubo Y, Maruyama F, Mitsui H, Nagata Y, Tsuda M. Complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader. J Bacteriol. 2012;194:6970–1.

    Article  CAS  Google Scholar 

  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.

    Article  Google Scholar 

  30. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek. 2017;110:1281–6.

    Article  CAS  Google Scholar 

  31. Komaki H, Tamura T. Reclassification of Streptomyces rimosus subsp. paromomycinus as Streptomyces paromomycinus sp. nov. Int J Syst Evol Microbiol. 2019;69:2577–83.

    Article  CAS  Google Scholar 

  32. Wayne LG, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–4.

    Article  Google Scholar 

  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.

    Article  Google Scholar 

  34. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol. 2012;35:7–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the commissioned project from the Japan Patent Office. We are grateful to Ms Satomi Saitou for assistance of taxonomic experiments. We thank Mr Munemitsu Yuasa, Ms Satomi Miura, and Ms Maiko Hashimoto for sequencing the genomes. We also thank Ms Yuko Kitahashi and Ms Aya Uohara for finishing the genome sequences, annotating the NRPS and PKS genes and registering the genome sequences in the DDBJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayuki Komaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komaki, H., Sakurai, K., Hosoyama, A. et al. Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J Antibiot 73, 141–151 (2020). https://doi.org/10.1038/s41429-019-0261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-019-0261-1

This article is cited by

Search

Quick links