Skip to main content
Log in

Adsorption of benzene, aniline and benzoic acid in water by fullerene (\(\hbox {C}_{60})\) and fullerene nanowhiskers

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Most aromatic hydrocarbons and their derivatives are harmful organic molecules. Despite their low solubility, trace amounts of aromatic hydrocarbons can be present in water. If water is contaminated by aromatic hydrocarbons, it is very difficult to remove these from water. Through contaminated water, these compounds can exert deleterious effects in plants and animals, as well as on human health. Fullerenes and their derivatives typically exhibit hydrophobic characteristics, and are therefore considered as good adsorbents for the removal of aromatic hydrocarbons. Herein, the removal of benzene, aniline and benzoic acid by fullerene and fullerene nanowhiskers was evaluated. While benzene was removed satisfactorily from water, aniline and benzoic acid were not, owing to the presence of ionized functional groups. However, adjustment of the solution pH to values where the functional groups of aniline or benzoic acid do not have any charge, resulted in an increase in their adsorption. High pH values were found to have a positive effect on the removal of aniline, while low pH values were beneficial for the adsorption of benzoic acid. Fullerenes and fullerene nanowhiskers were thus found to be promising adsorbents for the removal of aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kawasaki S, Takizawa H, Takami K, Desaki M, Okazaki H, Kasama T et al 2001 Am. J. Respir. Cell Mol. Biol. 24 419

    Article  CAS  Google Scholar 

  2. Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw M L, Pettersson S et al 2002 Proc. Natl. Acad. Sci. USA 99 9990

    Article  CAS  Google Scholar 

  3. Bruehlmann S, Forss A-M, Steffen D and Heeb N V 2005 Environ. Sci. Technol. 39 331

    Article  CAS  Google Scholar 

  4. Hashizume H 2004 J. Environ. Sci. Health A 39 2615

    Article  Google Scholar 

  5. Hashizume H 2009 Clay Sci. 14 61

    CAS  Google Scholar 

  6. Hashizume H 2013 Clay Sci. 17 49

    CAS  Google Scholar 

  7. Willson M A, Lee G S and Taylor RC 2002 Clays Clay Miner. 50 348

    Article  Google Scholar 

  8. Razee S and Masujima T 2002 Anal. Chim. Acta 464 1

    Article  CAS  Google Scholar 

  9. Qu X, Zhang Y, Li H, Zheng S and Zhu D 2011 Environ. Sci. Technol. 45 2209

    Article  CAS  Google Scholar 

  10. Zhu D and Pignatello J J 2005 Environ. Sci. Technol. 39 2033

    Article  CAS  Google Scholar 

  11. Kubicki J D 2006 Environ. Sci. Technol. 40 2298

    Article  CAS  Google Scholar 

  12. Chen W, Duan L, Wang L and Zhu D 2008 Environ. Sci. Technol. 42 6862

    Article  CAS  Google Scholar 

  13. Arkas M, Tsiourvas D and Paleos C M 2003 Chem. Mater. 15 2844

    Article  CAS  Google Scholar 

  14. Bucheli T D and Gustafsson O 2000 Environ. Sci. Technol. 34 5144

    Article  CAS  Google Scholar 

  15. Nguyen-Phan T-D, Lee C Y, Chung J S and Shin E W 2008 Res. Chem. Intermed. 34 743

    Article  CAS  Google Scholar 

  16. de Souza S M, de A G U, da Luz A D, da Silva A and de Souza A A U 2012 Ind. Eng. Chem. Res. 51 6461

  17. Luz A D, de Souza S M, de A G U, da Luz S C, Rezende R V, de P et al 2013 Ind. Eng. Chem. Res. 52 7896

  18. Tournus F and Charlier J-C 2005 Phys. Rev. B 71 165421

    Article  Google Scholar 

  19. Abbas A, Abussaud B A, Ihsanullah Al-Baghli N A H and Redhwi H H 2017 Bioinorg. Chem. Appl. 2017 Article ID 2853925

  20. Budhwani N 2015 Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 9 186

  21. Petrova B, Budinova T, Tsyntsarski B, Kochkodan V, Shkavro Z and Petrov N 2010 Chem. Eng. J. 165 258

  22. Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 Nature 318 162

    Article  CAS  Google Scholar 

  23. Rikame S S, Mungray A A and Mungray A K 2018 Electrochim. Acta 275 8

    Article  CAS  Google Scholar 

  24. Wang H H, Sun X, Lin Z C, Pang Z F, Kong X Q, Lei M et al 2018 RSC Adv. 8 9503

    Article  CAS  Google Scholar 

  25. Oku T, Nagaoka S, Suzuki A, Kikuchi K, Hayashi Y, Inukai H et al 2008 J. Phys. Chem. Solids 69 1276

    Article  CAS  Google Scholar 

  26. Miyazawa K, Kuwasaki Y, Hamamoto K, Nagata S, Obayashi A and Kuwabara M 2003 Surf. Interface Anal. 35 117

    Article  CAS  Google Scholar 

  27. Miyazawa K, Hirata C and Wakahara T 2014 J. Cryst. Growth 405 68

    Article  CAS  Google Scholar 

  28. Yang K, Zhu L and Xing B 2006 Environ. Sci. Technol. 40 1855

    Article  CAS  Google Scholar 

  29. Su F, Lu C and Hu S 2009 Eng. Aspects 353 83

    Article  Google Scholar 

  30. Goto T, Amano Y, Machida M and Imazeki F 2015 Chem. Pharm. Bull. 63 726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Takatsugu Wakahara and Ms Kaori Nagaoka for their help in operating the SEM instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Hashizume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashizume, H., Hirata, C. & Miyazawa, K. Adsorption of benzene, aniline and benzoic acid in water by fullerene (\(\hbox {C}_{60})\) and fullerene nanowhiskers. Bull Mater Sci 43, 9 (2020). https://doi.org/10.1007/s12034-019-1990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1990-2

Keywords

Navigation