Skip to main content

Advertisement

Log in

Comparative machinability characterization of wire electrical discharge machining on different specialized AISI steels

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have attempted to prepare a comparative machinability study of wire electrical discharge machining of different difficult-to-machine materials, viz., stainless steel (SS) 316, H21 hot work tool steel and M42 high-speed steel (HSS). The key features, which are compared during the analysis, are mainly material removal rate, average surface roughness, kerf width, wire consumption rate (WCR), recast layer (RL), elemental diffusion, surface morphology and micro-hardness of the machined surface. They are found to be greatly influenced by pulse energy. The pulse energy is calculated in terms of ‘specific discharge energy’. Apart from the discharge energy, the thermal conductivity of the material also plays an important role in the formation of RL and inclusion of foreign elements such as carbon, oxygen, copper and zinc in RL. H21 steel has been found to be more prone to thermal defects due to its high-thermal conductivity and high tensile residual stresses, whereas more re-solidification of foreign materials is observed in SS316 and M42 HSS due to their high adhesive properties and low-thermal conductivity. But, in low-energy cutting, more uniform surfaces are observed in H21 steel in comparison with other two types of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li L, Wei X T and Li Z Y 2014 Appl. Surf. Sci. 313 318

    Google Scholar 

  2. Prasad K S and Gupta A K 2014 Procedia Mater. Sci. 6 347

    CAS  Google Scholar 

  3. Maranhão C and Davim J P 2010 Simul. Modell. Pract. Theory 18 139

    Google Scholar 

  4. Chen J, Zhang Q, Li Q, Fu S and Wang J 2014 Trans. Nonferrous Met. Soc. China 24 1022

    CAS  Google Scholar 

  5. Ciftci I 2006 Tribol. Int. 39 565

    CAS  Google Scholar 

  6. Zhang Z, Lin P, Zhou H and Ren L 2013 Appl. Surf. Sci. 276 62

    CAS  Google Scholar 

  7. Punturat J, Tangwarodomnukun V and Dumkum C 2014 Appl. Surf. Sci. 320 83

    CAS  Google Scholar 

  8. Newton T R, Melkote S N, Watkins T R, Trejo R M and Reister L 2009 Mater. Sci. Eng. A 513 208

    Google Scholar 

  9. Kapoor J, Khamba J S and Singh S 2012 Int. J. Mach. Mach. Mater. 12 126

    Google Scholar 

  10. Ramakrishnan R and Karunamoorthy L 2006 Int. J. Adv. Manuf. Technol. 29 105

    Google Scholar 

  11. Sharma N, Khanna R, Gupta D R and Sharma R 2013 Int. J. Adv. Manuf. Technol. 67 2269

    Google Scholar 

  12. Shakeri S, Ghassemi A, Hassani M and Hajian A 2016 Int. J. Adv. Manuf. Technol. 82 549

    Google Scholar 

  13. Kanlayasiri K and Jattakul P 2013 Precis. Eng. 37 556

    Google Scholar 

  14. Kanlayasiri K and Boonmung S 2007 J. Mater. Process. Technol. 26 187

    Google Scholar 

  15. Shabgard M R, Gholipoor A and Hatami M 2016 J. Mech. Sci. Technol. 30 3799

    Google Scholar 

  16. Pradhan M K 2013 Int. J. Adv. Manuf. Technol. 68 591

    Google Scholar 

  17. Choi K K, Nam W J and Lee Y S 2008 J. Mater. Process. Technol. 201 580

    CAS  Google Scholar 

  18. Samanta A, Sekh M and Sarkar S 2016 Int. J. Adv. Manuf. Technol. 1 1

    Google Scholar 

  19. Hascalyk A and Caydas U 2004 J. Mater. Process. Technol. 148 362

    CAS  Google Scholar 

  20. Tosun N, Cogun C and Pihtili H 2003 Int. J. Adv. Manuf. Technol. 21 857

    Google Scholar 

  21. Puri A B and Bhattacharyya B 2005 Int. J. Adv. Manuf. Technol. 25 301

    Google Scholar 

  22. Huang C A, Hsu C C and Kuo H H 2003 J. Mater. Process. Technol. 140 298

    CAS  Google Scholar 

  23. Nikalje A M, Kumar A and Srinadh K V S 2013 Int. J. Adv. Manuf. Technol. 69 41

    Google Scholar 

  24. Saha P, Tarafdar D, Pal S K, Saha P, Srivastava A K and Das K 2013 Appl. Soft Comput. 13 2065

    Google Scholar 

  25. Bhattacharya A 1984 Metal cutting: theory and practice (Calcutta: New Central Book Agency)

    Google Scholar 

  26. Dauw D F and Beltrami I 1994 Ann. CIRP 43 193

    Google Scholar 

  27. Sharma P, Chakradhar D and Narendranath S 2015 Mater. Design 88 558

    CAS  Google Scholar 

  28. Liao Y S and Yu Y P 2004 Int. J. Mach. Tools Manuf. 44 1373

    Google Scholar 

  29. Liao Y S, Chuang T J and Yu Y P 2014 Int. J. Adv. Manuf. Technol. 70 2051

    Google Scholar 

  30. Saha P, Singha A, Pal S K and Saha P 2008 Int. J. Adv. Manuf. Technol. 39 74

    Google Scholar 

  31. Kumar S D, Kanthababu M, Vajjiravelu V, Anburaj R, Thirumalai S N and Arul H 2011 Int. J. Adv. Manuf. Technol. 56 975

    Google Scholar 

  32. Shandilya P, Jain P K and Jain N K 2012 Int. J. Adv. Manuf. Technol. 61 1199

    Google Scholar 

  33. Mandal A, Dixit A R, Chattopadhyaya S, Paramanik A, Hloch S and Królczyk G 2017 Int. J. Adv. Manuf. Technol.93 433

  34. Liu J F, Li L and Guo Y B 2014 Appl. Surf. Sci. 308 253

    CAS  Google Scholar 

  35. Ghanem F, Braham C and Sidhom H 2003 J. Mater. Process. Technol. 142 163

    CAS  Google Scholar 

  36. Hasçalýk A and Çaydaş U 2004 J. Mater. Process. Technol. 148 362

    Google Scholar 

  37. Yueqin Z, Zhidong L, Lixia X and Wei W 2016 Int. J. Adv. Manuf. Technol. 1 2637

    Google Scholar 

  38. Gill A S and Kumar S 2015 Int. J. Adv. Manuf. Technol. 78 1585

    Google Scholar 

  39. Lundberg M, Saarimäki J, Moverare J J and Calmunger M 2017 Mater. Charact. 124 215

    CAS  Google Scholar 

  40. Huang C A, Hsu F Y and Yao S J 2004 Mater. Sci. Eng. A 371 119

    Google Scholar 

  41. Manjaiah M, Narendranath S, Basavarajappa S and Gaitonde V N 2015 Precis. Eng. 41 68

    Google Scholar 

  42. Sidhom H, Ghanem F, Amadou T, Gonzalez G and Braham C 2013 Int. J. Adv. Manuf. Technol. 65 141

    Google Scholar 

  43. Guu Y H and Hocheng H 2001 Mater. Sci. Eng.318 155

Download references

Acknowledgements

The authors express their heart full gratitude to Mr Bidyut Choudhuri and IIT, Kharagpur for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Choudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, B., Sen, R., Ghosh, S.K. et al. Comparative machinability characterization of wire electrical discharge machining on different specialized AISI steels. Bull Mater Sci 43, 14 (2020). https://doi.org/10.1007/s12034-019-1982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1982-2

Keywords

Navigation