Skip to main content
Log in

Enhanced topical econazole antifungal efficacy by amine-functionalized silica nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The present study aims at developing efficient econazole (ECO) platforms as topical creams for the treatment of fungal skin infections. The hexagonal mesoporous silica nanoparticle, known as MCM41, was synthesized and functionalized by aminopropyl groups (MCM41-\(\hbox {NH}_{2})\). Various ECO concentrations were loaded into MCM41 and MCM41-\(\hbox {NH}_{{2}}\) (MSNs); the optimized complexes with the highest entrapment efficiencies were characterized by X-ray powder diffraction, scanning electron microscopy (SEM) and gas-volumetric analysis (BET). SEM images showed a spherical shape of the parent nanoparticles—higher drug loading and incorporation into the nanoparticles were obtained by amino-functionalized MCM41. Cytotoxicity assays of MCM41 and MCM41-\(\hbox {NH}_{{2}}\) and the ECO inclusion complexes elucidated no toxicity to human dermal fibroblast cell lines. Enhanced antifungal activity against Candida albicans was observed for ECO/MCM41-\(\hbox {NH}_{{2}}\) compared with ECO/MCM41 and simple cream. No irritation was observed by the cream containing ECO/MSN application on white male rabbit skin after 72 h. MSNs were stable within 1 year storage. ECO-loaded silica nanoparticles can be considered for the development of reliable alternatives to ECO cream for the treatment of skin fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Firooz A, Nafisi S and Maibach H I 2015 Int. J. Pharm. 495 599

    CAS  Google Scholar 

  2. Martel C M, Parker J E, Bader O, Weig M, Gross U, Warrilow A G et al 2010 Antimicrob. Agents Chemother. 54 3578

    CAS  Google Scholar 

  3. Al-Marzouqi A H, Solieman A, Shehadi I and Adem A 2008 J. Inclusion Phenom. Macrocyclic Chem. 60 85

    CAS  Google Scholar 

  4. Verma P and Pathak K 2012 Nanomedicine 8 489

    CAS  Google Scholar 

  5. Gupta A K and Cooper E A 2008 Mycopathologia 166 353

    Google Scholar 

  6. Escobar-Chávez J J, Rodríguez-Cruz I M, Domínguez-Delgado C L, Díaz-Torres R, Revilla-Vázquez A L and Aléncaster N C 2012 Res. Rep. Transdermal Drug Delivery. https://doi.org/10.5772/50314

    Book  Google Scholar 

  7. Goyal R, Macri L K, Kaplan H M and Kohn J 2016 J. Controlled Release 240 77

    CAS  Google Scholar 

  8. Behtash A, Nafisi S and Maibach H I 2017 Curr. Drug Delivery 14 2

    CAS  Google Scholar 

  9. Sanna V, Gavini E, Cossu M and Giunchedi P 2007 J. Pharm. 59 1057

    CAS  Google Scholar 

  10. Yamaguchi H and Iwata K 1979 Antimicrob. Agents Chemother. 15 706

    CAS  Google Scholar 

  11. Hardia A, Jamindar D, Mahajan A and Hardia A 2017 Asian J. Pharm. Res. Dev. 5 1

    Google Scholar 

  12. Bachhav Y, Mondon K, Kalia Y, Gurny R and Moeller M 2011 J. Controlled Release 153 126

    CAS  Google Scholar 

  13. Passerini N, Gavini E, Albertini B, Rassu G, Di Sabatino M, Sanna V et al 2009 J. Pharma. Pharmacol. 61 559

    CAS  Google Scholar 

  14. Nafisi S, Schäfer-Korting M and Maibach H I 2015 Nanotoxicology 9 643

    CAS  Google Scholar 

  15. Ambrog V, Perioli L, Pagano C, Marmottini F, Moretti M, Mizzi F et al 2010 J. Pharm. Sci. 99 4738

    Google Scholar 

  16. Jug M, Mennini N, Kövér K E and Mura P 2014 J. Pharm. Biomed. Anal. 91 81

    CAS  Google Scholar 

  17. Vallet-Regí M, Colilla M, Izquierdo-Barba I and Manzano M 2018 Curr. Insights Mol. 23 47

    Google Scholar 

  18. Vazquez N I, Gonzalez Z, Ferrari B and Castro Y 2017 Bol. Soc. Esp. Ceram. Vidrio 56 139

    Google Scholar 

  19. Chen D, Huan F, Cheng Y B and Caruso R A 2009 J. Adv. Mater. 2 2206

    Google Scholar 

  20. Popat A, Hartono S B, Stahr F, Liu J, Qiao S Z and Lu G Q M 2011 J. Nanoscale 3 2801

    CAS  Google Scholar 

  21. Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos M D, Sancenón F et al 2012 J. Angew. Chem. 51 10556

    CAS  Google Scholar 

  22. Chong A M and Zhao X 2004 J. Catal. Today 93 293

    Google Scholar 

  23. Li Z, Barnes J C, Bosoy A, Stoddart J F and Zink J I 2012 Chem. Soc. Rev. 41 2590

    CAS  Google Scholar 

  24. Wang S 2009 Microporous Mesoporous Mater. 11 71

    Google Scholar 

  25. Tang F, Li L and Chen D 2012 Adv. Mater. 24 1504

    CAS  Google Scholar 

  26. Lodha A, Lodha M, Patel A, Chaudhuri J, Dalal J, Edwards M et al 2012 J. Pharm. BioAllied. Sci. 4 S92

    CAS  Google Scholar 

  27. Beck J, Vartuli J, Roth W J, Leonowicz M, Kresge C, Schmitt K et al 1992 J. Am. Chem. Soc. 114 10834

    CAS  Google Scholar 

  28. Parida K M and Rath D 2009 J. Mol. Catal. A 310 93

    CAS  Google Scholar 

  29. Berlier G, Gastaldi L, Sapino S, Miletto I, Bottinelli E, Chirio D et al 2013 Int. J. Pharm. 457 177

    CAS  Google Scholar 

  30. Frykstrand S, Forsgren J, Zhang P, Strømme M and Ferraz N 2015 J. Biomater. Nanobiotechnol. 6 257

    CAS  Google Scholar 

  31. Hamzah Z, Narawi N, Rasid H M and Yusoff A N M 2012 Malaysian J. Anal. Sci. 16 290

    Google Scholar 

  32. Sever R R, Alcala R, Dumesic J A and Root T W 2003 Microporous Mesoporous Mater. 66 53

    CAS  Google Scholar 

  33. Sapino S, Ugazio E, Gastaldi L, Miletto I, Berlier G, Zonari D et al 2015 Eur. J. Pharm. Biopharm. 89 116

    CAS  Google Scholar 

  34. Zarn J A, Brüschweiler B J and Schlatter J R 2003 Environ. Health Perspect. 111 255

    CAS  Google Scholar 

  35. Grosman A and Ortega C 2005 Langmuir 21 10515

    CAS  Google Scholar 

  36. Gelb L D 2002 Mol. Phys. 100 2049

    CAS  Google Scholar 

  37. Keene M T, Gougeon R D, Denoyel R, Harris R K, Rouquerol J and Llewellyn P L 1999 J. Mater. Chem. 9 2843

    CAS  Google Scholar 

  38. Kruk M and Jaroniec M 2001 Chem. Mater. 13 3169

    CAS  Google Scholar 

  39. Yokoi T, Yoshitake H and Tatsumi T 2004 J. Mater. Chem. 14 951

    CAS  Google Scholar 

  40. Parangi T F and Patel R M 2014 Bull. Mater. Sci. 37 609

    CAS  Google Scholar 

  41. Lepesheva G I and Waterman M R 2007 Biochim. Biophys. Acta 1770 467

    CAS  Google Scholar 

  42. Ghannoum M A and Rice L B 1999 Clin. Microbiol. Rev. 12 501

    CAS  Google Scholar 

  43. Myzak M C, Hardin K, Wang R, Dashwood R H and Ho E 2005 J. Carcinog. 27 811

    Google Scholar 

  44. Adukwu E C, Bowles M, Edwards-Jones V and Bone H 2016 Appl. Microbiol. Biotechnol. 100 9619

    CAS  Google Scholar 

  45. Fisichella M, Dabboue H, Bhattacharyya S, Saboungi M-L, Salvetat J-P, Hevor T et al 2009 Toxicol. In Vitro 23 697

Download references

Acknowledgement

The authors thank Islamic Azad University, Central Tehran Branch (IAUCTB), for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nafisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazeri, M., Razzaghi-Abyaneh, M., Nasrollahi, S.A. et al. Enhanced topical econazole antifungal efficacy by amine-functionalized silica nanoparticles. Bull Mater Sci 43, 13 (2020). https://doi.org/10.1007/s12034-019-1974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1974-2

Keywords

Navigation