Skip to main content
Log in

High-temperature corrosion of aluminized-AISI 1020 steel with NaCl and \({\hbox {Na}}_{2}{\hbox {SO}}_{4}\) deposits

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature corrosion of aluminized-American Iron and Steel Institute (AISI) 1020 steel with sodium chloride (NaCl) and sodium sulphate (\({\hbox {Na}}_{2} {\hbox {SO}}_{4}\)) deposits was studied using isothermal oxidization in a dry air environment at \(700{^{\circ }}\hbox {C}\) for 49 h. NaCl and \({\hbox {Na}}_{2} {\hbox {SO}}_{4}\) deposits on the aluminide layer interfered with protective alumina/aluminium oxide (\({\hbox {Al}}_{2} {\hbox {O}}_{3}\)) scale formation on the steel substrate. Chlorine and sulphur gases (\({\hbox {Cl}}_{\mathrm{2g}}\) and \({\hbox {S}}_{\mathrm{g}}\), respectively) released into the atmosphere corroded the protective \({\hbox {Al}}_{2}{\hbox {O}}_{3}\) layer. Corrosion of the \({\hbox {Al}}_{2}{\hbox {O}}_{3}\) layer was also due to local formation of iron oxide (\({\hbox {Fe}}_{2}{\hbox {O}}_{3}\)). \({\hbox {Fe}}_{2}{\hbox {O}}_{3}\) growth is attributed to ferric chloride (\({\hbox {FeCl}}_{3}\)) vaporization. \({\hbox {S}}_{\mathrm{g}}\) diffusion into the \({\hbox {Al}}_{2} {\hbox {O}}_{3}\) scale via \({\hbox {Al}}^{3+}\) vacancy defects led to the formation of aluminium sulphide on the aluminide layer surface. Cl and S consequently induced hot corrosion of the aluminized steel, thereby increasing cyclic oxychloridation and sulphidation rates at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Subhash K, Jayaganthan R and Prakash S 2010 Bull. Mater. Sci. 33 299

    Article  Google Scholar 

  2. Safadoost A, Davoodi M and Mansoori S A A 2014 J. Nat. Gas Sci. Eng. 19 105

    Article  CAS  Google Scholar 

  3. Mishra N K and Mishra S B 2015 Bull. Mater. Sci. 38 1679

    Article  CAS  Google Scholar 

  4. Lindberg D, Niemi J, Engblom M, Yrjas P, Lauren T and Hupa M 2016 Fuel Process. Technol. 141 285

    Article  CAS  Google Scholar 

  5. Badaruddin M, Risano A Y E, Wardono H and Asmi D 2017 AIP Conf. Proc. 1788 030066

    Article  Google Scholar 

  6. Sen M, Balasubramaniam R and Kumar A V R 2000 Bull. Mater. Sci. 23 399

    Article  CAS  Google Scholar 

  7. Liu H H, Cheng W J and Wang C J 2011 Appl. Surf. Sci. 257 10645

    Article  CAS  Google Scholar 

  8. Badaruddin M, Wang C J, Wardono H, Tarkono and Asmi D 2016 AIP Conf. Proc. 1711 040002

  9. Wang C J and Li C C 2004 Surf. Coat. Technol. 177–178 37

    Article  Google Scholar 

  10. Wang C J, Lee J W and Twu T H 2003 Surf. Coat. Technol. 163–164 37

    Article  Google Scholar 

  11. Bose S 2018 High-temperature corrosion in High temperature coating, chapter 5, 2nd edn (Butterworth-Heinemann: Elsevier) 74. https://doi.org/10.1016/C2015-0-01316-8

  12. Yajiang L, Juan W, Yonglan Z and Holly X 2002 Bull. Mater. Sci. 25 635

    Article  Google Scholar 

  13. Bouche K, Barbier F and Coulet A 1998 Mater. Sci. Eng. A 249 167

    Article  Google Scholar 

  14. Pieraggi B 1987 Oxid. Met. 27 177

    Article  CAS  Google Scholar 

  15. Badaruddin M and Sugiyanto 2013 Adv. Mater. Res. 789 463

  16. Koech P K and Wang C J 2018 Oxid. Met. 90 713

    Article  CAS  Google Scholar 

  17. Shi L 1993 Oxid. Met. 40 197

    Article  CAS  Google Scholar 

  18. Ciszak C, Popa I, Brossard J M, Monceau D and Chevalier S 2016 Corros. Sci. 110 91

    Article  CAS  Google Scholar 

  19. Yan Y F, Xu X Q, Zhou D Q, Wang H, Wu Y, Liu X J et al 2013 Corros. Sci. 77 202

    Article  CAS  Google Scholar 

  20. Speight J G 2002 Lange’s handbook of chemistry 16th edn (New York: McGraw-Hill)

    Google Scholar 

  21. Godlewska E, Mitoraj M and Leszczynska K 2014 Corros. Sci. 78 63

    Article  CAS  Google Scholar 

  22. Knacke O, Kubaschewski O and Hesselmann K 1977 Thermochemical properties of inorganic substance (Berlin: Springer) 91. https://doi.org/10.1007/978-3-662-02293-1

  23. Neumann G 1990 in Diffusion in solid metals and alloys, numerical data and functional relationships in science and technology H Mehrer (ed) (Springer-Verlag, Berlin) vol. 26, p 152

  24. Le Claire A D 1990 in Diffusion in solid metals and alloys, numerical data and functional relationship in science and technology H Mehrer (ed) (Springer-Verlag, Berlin) vol. 26, p 129

  25. Tsaur C C, Rock J C, Wang C J and Su Y H 2005 Mater. Chem. Phys. 89 445

    Article  CAS  Google Scholar 

  26. Buscaglia V, Nanni P and Bottino C 1990 Corros. Sci. 30 327

    Article  CAS  Google Scholar 

  27. Lee W H and Lin R Y 1999 Mater. Chem. Phys. 58 231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for financial support via the Incentive Research System of National Innovation and the National Strategy Research grant under contract number 529/UN26/8/LPPM/2016–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Badaruddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badaruddin, M., Sugiyanto & Asmi, D. High-temperature corrosion of aluminized-AISI 1020 steel with NaCl and \({\hbox {Na}}_{2}{\hbox {SO}}_{4}\) deposits. Bull Mater Sci 43, 11 (2020). https://doi.org/10.1007/s12034-019-1984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1984-0

Keywords

Navigation