Skip to main content
Log in

Microstructure Evolution and Recrystallization of D36 Steel during Ultrasonic Impact Assisted with Electropulsing and Heat

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ultrasonic impact treatment (UIT) combined with high-energy electropulsing (EP) was applied to D36 low-carbon steel with three different electrical regimes. Submicron crystalline was obtained on the superficial region after the treatment due to continuous dynamic recrystallization. The cementite experienced strain-induced decomposition and precipitation. The microstructure is significantly determined by the current density and temperature. A strengthened layer with a maximum hardness of 285 HV was obtained in EP-UIT, in comparison with the hardness of 227 HV resulted from UIT solely. Alongside with high hardness, the strengthened layer extended to a remarkable depth of nearly 2 mm due to acoustic softening, electroplasticity and thermal softening engaged simultaneously. A 3-μm oxide layer in average consisting of magnetite and hematite formed on the treated surface. Joule heat and athermal effect of EP are the factors inducing these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Juang and Y. Tarng, Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel, J. Mater. Process. Technol., 2002, 122(1), p 33–37

    Google Scholar 

  2. O. Hatamleh, J. Lyons, and R. Forman, Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints, Int. J. Fatigue, 2007, 29(3), p 421–434

    CAS  Google Scholar 

  3. T. Wang, J. Yu, and B. Dong, Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel, Surf. Coat. Technol., 2006, 200(16–17), p 4777–4781

    CAS  Google Scholar 

  4. K. Darling, M. Tschopp, A. Roberts, J. Ligda, and L. Kecskes, Enhancing grain refinement in polycrystalline materials using surface mechanical attrition treatment at cryogenic temperatures, Scripta Mater., 2013, 69(6), p 461–464

    CAS  Google Scholar 

  5. A. Abdullah, M. Malaki, and A. Eskandari, Strength enhancement of the welded structures by ultrasonic peening, Mater. Des., 2012, 38(38), p 7–18

    CAS  Google Scholar 

  6. N. Krylov and A. Polischuk, The use of ultrasonic equipment for metal structure stabilization, Basic Physics of Industrial Ultrasonic Applications, 1970, 1, p 70

    Google Scholar 

  7. M. Liao, W. Chen, and N. Bellinger, Effects of ultrasonic impact treatment on fatigue behavior of naturally exfoliated aluminum alloys, Int. J. Fatigue, 2008, 30(4), p 717–726

    CAS  Google Scholar 

  8. B. Mordyuk, G. Prokopenko, K. Grinkevych, N. Piskun, and T. Popova, Effects of ultrasonic impact treatment combined with the electric discharge surface alloying by molybdenum on the surface related properties of low-carbon steel G21Mn5, Surf. Coat. Technol., 2017, 309, p 969–979

    CAS  Google Scholar 

  9. M. Malaki and H. Ding, A review of ultrasonic peening treatment, Mater. Des., 2015, 87, p 1072–1086

    CAS  Google Scholar 

  10. T. Deguchi, M. Mouri, J. Hara, D. Kano, T. Shimoda, F. Inamura, T. Fukuoka, and K. Koshio, Fatigue strength improvement for ship structures by ultrasonic peening, J. Mar. Sci. Tech, 2012, 17(3), p 360–369

    Google Scholar 

  11. G. Jinu, P. Sathiya, G. Ravichandran, and A. Rathinam, Investigation of the fatigue behaviour of butt-welded joints treated by ultrasonic peening process and compared with fatigue life assessment standards, Int. J. Adv. Manu. Tech, 2009, 40(1–2), p 74–83

    Google Scholar 

  12. S. Roy, J.W. Fisher, and B.T. Yen, Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT), Int. J. Fatigue, 2003, 25(9), p 1239–1247

    CAS  Google Scholar 

  13. Y. Liu, D. Wang, C. Deng, L. Xia, L. Huo, L. Wang, and B. Gong, Influence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints, Int. J. Fatigue, 2014, 66, p 155–160

    CAS  Google Scholar 

  14. H. Shimanuki and T. Okawa, Effect of stress ratio on the enhancement of fatigue strength in high performance steel welded joints by ultrasonic impact treatment, Int. J. Steel. Struct, 2013, 13(1), p 155–161

    Google Scholar 

  15. R.T. Yekta, K. Ghahremani, and S. Walbridge, Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds, Int. J. Fatigue, 2013, 55, p 245–256

    Google Scholar 

  16. B. Langenecker, Effects of ultrasound on deformation characteristics of metals, IEEE transactions on sonics and ultrasonics, 1966, 13(1), p 1–8

    Google Scholar 

  17. E. Ghassemieh and A. Siddiq, Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects, Mech. Mater., 2008, 40(12), p 982–1000

    Google Scholar 

  18. A. Siddiq and S.T. El, Ultrasonic-assisted manufacturing processes: variational model and numerical simulations, Ultrasonics, 2012, 52(4), p 521–529

    Google Scholar 

  19. B. Mordyuk, G. Prokopenko, P.Y. Volosevich, L. Matokhnyuk, A. Byalonovich, and T. Popova, Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with the electric discharge surface alloying, Mater. Sci. Eng., A, 2016, 659, p 119–129

    CAS  Google Scholar 

  20. Y. Liu, D. Wang, C. Deng, L. Huo, L. Wang, and S. Cao, Feasibility study on preparation of coatings on Ti–6Al–4 V by combined ultrasonic impact treatment and electrospark deposition, Mater. Des., 2014, 63, p 488–492

    CAS  Google Scholar 

  21. H. Conrad, Electroplasticity in metals and ceramics, Mater. Sci. Eng., A, 2000, 287(2), p 276–287

    Google Scholar 

  22. K. Klimov, G. Shnyrev, and I. Novikov, On electroplasticity of metals, Dokl. Akad. Nauk SSSR, 1974, 219(2), p 323–324

    CAS  Google Scholar 

  23. M.I. Molotskii, Theoretical basis for electro-and magnetoplasticity, Mater. Sci. Eng., A, 2000, 287(2), p 248–258

    Google Scholar 

  24. H. Conrad and A.F. Sprecher, The electroplastic effect in metals, Elsevier Science, Amsterdam, 1989

    Google Scholar 

  25. G. Tang, J. Zhang, Y. Yan, H. Zhou, and W. Fang, The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, J. Mater. Process. Technol., 2003, 137(1–3), p 96–99

    CAS  Google Scholar 

  26. Z. Xu, G. Tang, S. Tian, F. Ding, and H. Tian, Research of electroplastic rolling of AZ31 Mg alloy strip, J. Mater. Process. Technol., 2007, 182(1), p 128–133

    CAS  Google Scholar 

  27. W. Zhang, M. Sui, Y. Zhou, and D. Li, Evolution of microstructures in materials induced by electropulsing, Micron, 2003, 34(3), p 189–198

    CAS  Google Scholar 

  28. H. Wang, G. Song, and G. Tang, Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process, Surf. Coat. Technol., 2015, 282, p 149–154

    CAS  Google Scholar 

  29. H. Wang, G. Song, and G. Tang, Effect of electropulsing on surface mechanical properties and microstructure of AISI, 304 stainless steel during ultrasonic surface rolling process, Mater. Sci. Eng., A, 2016, 662, p 456–467

    CAS  Google Scholar 

  30. Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg–9Al–1Zn alloy strip, Appl. Phys. A, 2009, 97(3), p 607–615

    CAS  Google Scholar 

  31. J. Chen, H. Zhang, P. Zhang, Z. Yu, Y. Zhang, C. Yu, and H. Lu, The Zn accumulation behavior, phase evolution and void formation in Sn-xZn/Cu systems by considering trace Zn: a combined experimental and theoretical study, Journal of Materials Research and Technology, 2019, 8(5), p 4141–4150

    CAS  Google Scholar 

  32. A. Rahnama and R. Qin, The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 014% carbon steel, Mater. Sci. Eng., A, 2015, 627, p 145–152

    CAS  Google Scholar 

  33. L. Tao, X. Li, G. Tang, and G. Song, Effect of ultrasonic impact treatment assisted with high energy electropulsing on microstructure of D36 carbon steel, J. Mater. Res., 2016, 31(24), p 3956–3967

    Google Scholar 

  34. E.S. Statnikov, O.V. Korolkov, and V.N. Vityazev, Physics and mechanism of ultrasonic impact, Ultrasonics, 2006, 44(4), p e533–e538

    Google Scholar 

  35. B.N. Mordyuk and G.I. Prokopenko, Ultrasonic impact peening for the surface properties’ management, J. Sound & Vibra, 2007, 308(3), p 855–866

    Google Scholar 

  36. X.J. Cao, Y.S. Pyoun, and R. Murakami, Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification, Appl. Surf. Sci., 2010, 256(21), p 6297–6303

    CAS  Google Scholar 

  37. P. Belkin, A. Yerokhin, and S. Kusmanov, Plasma electrolytic saturation of steels with nitrogen and carbon, Surf. Coat. Technol., 2016, 307, p 1194–1218

    CAS  Google Scholar 

  38. M. Naeem, J. Iqbal, M. Abrar, K.H. Khan, J. Díaz-Guillén, C. Lopez-Badillo, M. Shafiq, M. Zaka-ul-Islam, and M. Zakaullah, The effect of argon admixing on nitriding of plain carbon steel in N2 and N2-H2 plasma, Surf. Coat. Technol., 2018, 350, p 48–56

    CAS  Google Scholar 

  39. J. Yang, Z. Yu, Y. Li, H. Zhang, and N. Zhou, Laser welding/brazing of 5182 aluminium alloy to ZEK100 magnesium alloy using a nickel interlayer, Sci. Technol. Weld. Joining, 2018, 23(7), p 543–550

    CAS  Google Scholar 

  40. F.R.N. Nabarro, Theory of crystal dislocations, Clarendon Press, Oxford, 1967

    Google Scholar 

  41. A.V. Kozlov, B.N. Mordyuk, and A.V. Chernyashevsky, On the additivity of acoustoplastic and electroplastic effects, Mater. Sci. Eng., A, 1995, 190(1–2), p 75–79

    Google Scholar 

  42. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater Sci., 2014, 60, p 130–207

    CAS  Google Scholar 

  43. S. Gourdet and F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Mater. Sci. Eng., A, 2000, 283(1–2), p 274–288

    Google Scholar 

  44. K. Tsuzaki, X. Huang, and T. Maki, Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel, Acta Mater., 1996, 44(11), p 4491–4499

    CAS  Google Scholar 

  45. T. Sakai, Plastic deformation: Role of recovery and recrystallization, Encyclopedia of materials: science and technology, 2001, 7, p 7079

    Google Scholar 

  46. N. Tao, Z. Wang, W. Tong, M. Sui, J. Lu, and K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 2002, 50(18), p 4603–4616

    CAS  Google Scholar 

  47. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci., 2000, 45(2), p 103–189

    CAS  Google Scholar 

  48. H. Zhang, Z. Hei, G. Liu, J. Lu, and K. Lu, Formation of nanostructured surface layer on AISI, 304 stainless steel by means of surface mechanical attrition treatment, Acta Mater., 2003, 51(7), p 1871–1881

    CAS  Google Scholar 

  49. S. Tjong and H. Chen, Nanocrystalline materials and coatings, Materials Science and Engineering: R: Reports, 2004, 45(1), p 1–88

    Google Scholar 

  50. L. Storojeva, D. Ponge, R. Kaspar, and D. Raabe, Development of microstructure and texture of medium carbon steel during heavy warm deformation, Acta Mater., 2004, 52(8), p 2209–2220

    CAS  Google Scholar 

  51. R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing, Acta Mater., 2005, 53(3), p 845–858

    CAS  Google Scholar 

  52. J. Languillaume, G. Kapelski, and B. Baudelet, Cementite dissolution in heavily cold drawn pearlitic steel wires, Acta Mater., 1997, 45(3), p 1201–1212

    CAS  Google Scholar 

  53. X. Sauvage, J. Copreaux, F. Danoix, and D. Blavette, Atomic-scale observation and modelling of cementite dissolution in heavily deformed pearlitic steels, Philos. Mag. A, 2000, 80(4), p 781–796

    CAS  Google Scholar 

  54. V.G. Gavriljuk, Comment on “Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires”, Scripta Mater., 2001, 45(12), p 1469–1472

    CAS  Google Scholar 

  55. Y. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite, Acta Mater., 2011, 59(10), p 3965–3977

    CAS  Google Scholar 

  56. P. Liaw, R. Viswanathan, K. Murty, E. Simonen, D. Frear, Microstructures and Mechanical Properties of Aging Materials, 1993.

  57. H. Conrad, Effects of electric current on solid state phase transformations in metals, Mater. Sci. Eng., A, 2000, 287(2), p 227–237

    Google Scholar 

Download references

Acknowledgment

This work has been funded and assisted by CIMC (China International Marine Containers (Group) Co., Ltd.). This work is also funded by projects from Shenzhen Government (Grant No. HYCYGJ20140512010015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Liu or Guoyi Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, X., Tang, G. et al. Microstructure Evolution and Recrystallization of D36 Steel during Ultrasonic Impact Assisted with Electropulsing and Heat. J. of Materi Eng and Perform 29, 541–553 (2020). https://doi.org/10.1007/s11665-019-04522-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04522-0

Keywords

Navigation