Skip to main content

Advertisement

Log in

Inorganic–Organic Hybrids of Tungsten Oxide as the High Performance Intercalation Supercapacitor Electrodes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, the layered inorganic–organic hybrids materials based on tungsten oxide were synthesized using three amino-hydroxy ligands; 2-(2-aminoethoxy) ethanol (AEE), 2-(2-aminoethylamino) ethanol, and diethylenetriamine, by direct intercalation of these guest ligands. Then, the synthesized hybrids were applied as the novel supercapacitor electrode materials. Various analytical techniques were utilized to investigate the interaction between the inorganic and organic components and to understand how the intercalation of organic guests effects on the electrocapacitive performance of the electrodes. The evaluation of electrodes properties shows the outstanding performance of the [WO3·AEE] hybrid electrode that is annealed at 300 °C, the hybrid with more oxygen donor ligands versus the other ligands that have more amino groups. This hybrid has the highest specific capacitance of 207.27 F/g at the current density of 2 A/g with 100% capacitance retention. Also, this hybrid electrode exhibits a good power density of 1127 Wh kg−1 at the energy density of 1.25 kW kg−1. These results exhibit the outstanding electrocapacitive performance of hybrids revealing from the synergetic effects of organic and inorganic parts in the hybrids that made them more active than pure WO3 electrode. The intercalations of organic guests increase the oxide interlayer space that can accelerate the ion diffusion. Also, the electron donations of organic guests to the tungsten inorganic center can surprisingly increase the kinetics of electron transfer and consequently improve the performance of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Nanosci. Technol. 320 (2009)

  3. A. Borenstein, O. Hanna, R. Attias, Sh Luski, Th Brousse, D. Aurbach, J. Mater. Chem. A. 5, 12653 (2017)

    Article  CAS  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. S. Rudra, R. Chakraborty, P.K. Maji, S. Koley, A.K. Nayak, D. Paul, M. Pradhan, Electrochim. Acta 324, 134865 (2019)

    Article  CAS  Google Scholar 

  7. S. Rudra, A.K. Nayak, S. Koley, R. Chakraborty, P.K. Maji, M. Pradhan, ACS Sustain. Chem. Eng. 71, 724 (2019)

    Article  CAS  Google Scholar 

  8. K.J. Samdani, D.W. Joh, K.T. Lee, J. Alloys Compd. 748, 134 (2018)

    Article  CAS  Google Scholar 

  9. B.T. Liu, X.M. Shi, X.Y. Lang, L. Gu, Z. Wen, M. Zhao, Q. Jiang, Nat. Commun. 9, 1 (2018)

    Article  CAS  Google Scholar 

  10. X. Guo, G. Zhang, Q. Li, H. Xue, H. Pang, Energy Storage Mater. 15, 171 (2018)

    Article  Google Scholar 

  11. S.C. Sekhar, G. Nagaraju, J.S. Yu, Nano Energy 48, 81 (2018)

    Article  CAS  Google Scholar 

  12. L. Li, K.S. Hui, K.N. Hui, T. Zhang, J. Fu, Y.R. Cho, Chem. Eng. J. 348, 338 (2018)

    Article  CAS  Google Scholar 

  13. M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang et al., Chem. Eng. J. 347, 291 (2018)

    Article  CAS  Google Scholar 

  14. L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, W. Mai, Chem. Commun. 52, 6296 (2016)

    Article  CAS  Google Scholar 

  15. Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Adv. Mater. 27, 5309 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-Zadeh, Adv. Funct. Mater. 21, 2175 (2011)

    Article  CAS  Google Scholar 

  17. C. Di Valentin, G. Pacchioni, Acc. Chem. Res. 47, 3233 (2014)

    Article  PubMed  CAS  Google Scholar 

  18. Wang, J. Li, X. Cao, G. Pang, S. Feng, Chem. Commun. 46, 7718 (2010)

    Article  CAS  Google Scholar 

  19. S. Yoon, E. Kang, J.K. Kim, C.W. Lee, J. Lee, Chem. Commun. 47, 1021 (2011)

    Article  CAS  Google Scholar 

  20. S. Yoon, C. Jo, S.Y. Noh, C.W. Lee, J.H. Song, J. Lee, Phys. Chem. Chem. Phys. 13, 11060 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. H. Peng, G. Ma, K. Sun, J. Mu, M. Luo, Z. Lei, Electrochim. Acta 147, 54 (2014)

    Article  CAS  Google Scholar 

  22. Y. Zhou, S. Ko, C.W. Lee, S.G. Pyo, S.K. Kim, S. Yoon, J. Power Sources 244, 777 (2013)

    Article  CAS  Google Scholar 

  23. Y.-H. Wang, C.-C. Wang, W.-Y. Cheng, S.-Y. Lu, Carbon 69, 287 (2014)

    Article  CAS  Google Scholar 

  24. L.N. Gao, X.F. Wang, Z. Xie, W.F. Song, L.J. Wang, X. Wu, F.Y. Qu, D. Chen, G.Z. Shen, J. Mater. Chem. A. 1, 7167 (2013)

    Article  CAS  Google Scholar 

  25. C.R. Raj, S. Bag, J. Mater. Chem. A. 2, 17848 (2014)

    Article  CAS  Google Scholar 

  26. P. Gornez-Romero, M. Lira-Cantu, Adv. Matter. 9, 144 (1997)

    Article  Google Scholar 

  27. M. Lira-Cantú, P. Gómez-Romero, Chem. Mater. 10, 698 (1998)

    Article  Google Scholar 

  28. P. Gómez-Romero, M. Chojak, K. Cuentas-Gallegos, J.A. Asensio, P.J. Kulesza, N. Casañ-Pastor, M. Lira-Cantú, Electrochem. Commun. 5, 149 (2003)

    Article  CAS  Google Scholar 

  29. ChA Nwanya, C.J. Jaftab, P.M. Ejikem, P.E. Ugwuoke, M.V. Reddy, R.U. Osuji, K.I. Ozoemen, F.I. Ezem, Electrochim. Acta 128, 218 (2014)

    Article  CAS  Google Scholar 

  30. V. Ruiz, J. Suárez-Guevara, P. Gomez-Romero, ECS Trans. 50, 117 (2013)

    Article  CAS  Google Scholar 

  31. M. Afsharpour, A.R. Mahjoub, M.M. Amini, A.A. Khodadadi, Curr. Nanosci. 6, 82 (2010)

    Article  CAS  Google Scholar 

  32. M. Afsharpour, A. Mahjoub, M.M. Amini, J. Inorg. Organomet. Polym. Mater. 19, 298 (2009)

    Article  CAS  Google Scholar 

  33. Y. Jing, Q. Pan, Z. Cheng, X. Dong, Y. Xiang, Sci. Eng. B Solid State Mater. Adv. Technol. 138, 55 (2007)

    Article  CAS  Google Scholar 

  34. O.Y. Posudievsky, S.A. Biskulova, V.D. Pokhodenko, J. Mater. Chem. 12, 1446 (2002)

    Article  CAS  Google Scholar 

  35. M. Afsharpour, A. Mahjoub, M.M. Amini, J. Inorg. Organomet. Polym. Mater. 18, 472 (2008)

    Article  CAS  Google Scholar 

  36. R.F. De Farias, Mater. Chem. Phys. 90, 302 (2005)

    Article  CAS  Google Scholar 

  37. M.I. Schukoor, H.A. Therese, L. Gorgishvili, G. Glasser, U. Kolb, W. Tremel, Chem. Mater. 18, 2144 (2006)

    Article  CAS  Google Scholar 

  38. Cheng, Y. Yang, Y. Luo, Ch. Fang, J. Xiong, Electrochim. Acta. 176, 1343 (2015)

    Article  CAS  Google Scholar 

  39. Y.W. Li, J.H. Yao, C.J. Liu, W.M. Zhao, W.X. Deng, S.K. Zhong, Int. J. Hydrogen. Energy. 35, 2539 (2010)

    CAS  Google Scholar 

  40. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 5925 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. L.L. Xing, K.J. Huang, L.X. Fang, Dalt. Trans. 45, 17439 (2016)

    Article  CAS  Google Scholar 

  42. A.K. Cuentas-Gallegos, M. Lira-Cantú, N. Casañ-Pastor, P. Gómez-Romero, Adv. Funct. Mater. 15, 1125 (2005)

    Article  CAS  Google Scholar 

  43. D. Mandal, P. Routh, A.K. Nandi, Small 14, 1 (2018)

    Article  CAS  Google Scholar 

  44. C.C. Tu, L.Y. Lin, B.C. Xiao, Y.S. Chen, J. Power Source. 320, 78 (2016)

    Article  CAS  Google Scholar 

  45. I. Yang, S.G. Kim, S.H. Kwon, M.S. Kim, J.C. Jung, Electrochim. Acta 223, 21 (2017)

    Article  CAS  Google Scholar 

  46. K. Eloot, F. Debuyck, M. Moors, A.P. Van Peteghem, J. Appl. Electrochem. 25, 326 (1995)

    Article  CAS  Google Scholar 

  47. H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta 21, 539 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this investigation by CCERCI is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Afsharpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsharpour, M., Bayatpour, S. & Seifikar Gomi, L. Inorganic–Organic Hybrids of Tungsten Oxide as the High Performance Intercalation Supercapacitor Electrodes. J Inorg Organomet Polym 30, 2406–2417 (2020). https://doi.org/10.1007/s10904-019-01422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01422-7

Keywords

Navigation