Skip to main content
Log in

Light Emission in Nd Doped Si-Rich HfO2 Films Prepared by Magnetron Sputtering

  • Topical Collection: 61st Electronic Materials Conference 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hafnium oxide films doped with Si and Nd atoms were produced by radio-frequency magnetron sputtering of a HfO2 target topped with calibrated Si and Nd2O3 pellets in pure argon plasma followed by an annealing in nitrogen atmosphere during tA = 15 min at different temperatures (TA = 800–1100°C). The evolution of structural, chemical and luminescent properties of the films with TA was studied by means of the scanning electronic microscopy (SEM), x-ray diffraction (XRD), Raman scattering, energy dispersive x-ray spectroscopy and photoluminescence (PL) methods. The SEM method revealed that the surface of as-deposited film consists of the grains with the mean size of 20–60 nm. Annealing treatment stimulated the growing of the grains (up to 100 nm in lateral size) and film densification. The presence of Si-rich phase was detected by Raman scattering spectra in as-deposited films and those annealed at low TA. The TA increase results in the phase separation process. For the films annealed at TA > 950°C, the tetragonal HfO2 and SiO2 phases were clearly detected by the XRD method. PL spectra of the films were found to be complex. They demonstrated several PL bands in the visible (400–750 nm) and infrared (800–1430 nm) spectral ranges. Besides PL components caused by the recombination of carriers via host defects, the PL signal from Nd3+ ions due to the transition in the 4f inner electronic shell was observed. The highest Nd3+ related PL signal was observed for the films annealed at TA = 950°C. Peculiarities of PL excitation and the mechanism of the phase separation are analysed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.L. Komarek, eds., Hafnium: Physico-Chemical Properties of Its Compounds and Alloys, Atomic Energy Review, Special Issue No. 8 (Vienna: International Atomic Energy Agency, 1981), p. 245.

    Google Scholar 

  2. S. Sayan, E. Garfunkel, T. Nishimura, W.H. Schulte, T. Gustafsson, and G.D. Wilk, J. Appl. Phys. 94, 928 (2003).

    Article  CAS  Google Scholar 

  3. K.J. Hubbard and D.G. Schlom, J. Mater. Res. 11, 2757 (1996).

    Article  CAS  Google Scholar 

  4. S. Ramanathan, P.C. McIntyre, J. Luning, P.S. Lysaght, Y. Yang, Z. Chen, and S. Stemmer, J. Electrochem. Soc. 150, F173 (2003).

    Article  CAS  Google Scholar 

  5. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).

    Article  CAS  Google Scholar 

  6. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 2651 (2004).

    Article  CAS  Google Scholar 

  7. L. Khomenkova, X. Portier, J. Cardin, and F. Gourbilleau, Nanotechnology 21, 285707 (2010).

    Article  CAS  Google Scholar 

  8. C. Giovinazzo, J. Sandrini, E. Shahrabi, O.T. Celik, Y. Leblebici, and C. Ricciardi, ACS Appl. Electron. Mater. 16, 900 (2019).

    Article  CAS  Google Scholar 

  9. Z. Fan, J. Chen, and J. Wang, J. Adv. Dielectr. 6, 1630003 (2016).

    Article  CAS  Google Scholar 

  10. J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, and F. Sánchez, ACS Appl. Electron. Mater. 1, 220 (2019).

    Article  CAS  Google Scholar 

  11. B. Awadhiya, P.N. Kondekar, and A.D. Meshram, J. Electron. Mater. 48, 6762 (2019).

    Article  CAS  Google Scholar 

  12. Q. Shao, X. Wang, W. Jiang, Y. Chen, X. Zhang, L. Tu, T. Lin, H. Shen, X. Meng, A. Liu, and J. Wang, Appl. Phys. Lett. 115, 162902 (2019).

    Article  CAS  Google Scholar 

  13. S. Park, M.C. Chun, S. Park, G. Park, M. Jung, Y. Noh, S.-E. Ahn, and B.S. Kang, Curr. Appl. Phys. 19, 347 (2019).

    Article  Google Scholar 

  14. S. Jena, R.B. Tokas, J.S. Misal, K.D. Rao, D.V. Udupa, S. Thakur, and N.K. Sahoo, Thin Solid Films 592, 135 (2015).

    Article  CAS  Google Scholar 

  15. L.X. Liu, Z.W. Ma, Y.Z. Xie, Y.R. Su, H.T. Zhao, M. Zhou, J.Y. Zhou, J. Li, and E.Q. Xie, J. Appl. Phys. 107, 024309 (2010).

    Article  CAS  Google Scholar 

  16. G.C. Righini, S. Berneschi, G. Nunzi Conti, S. Pelli, E. Moser, R. Retoux, P. Féron, R.R. Gonçalves, G. Speranza, Y. Jestin, M. Ferrari, A. Chiasera, A. Chiappini, C. Armellini, and J. Non-Cryst, Sol. 355, 1853 (2009).

    CAS  Google Scholar 

  17. N.D. Afify, G. Dalba, and F. Rocca, J. Phys. D Appl. Phys. 42, 115416 (2009).

    Article  CAS  Google Scholar 

  18. L. Minati, G. Speranza, V. Micheli, M. Ferrari, and Y. Jestin, J. Phys. D Appl. Phys. 42, 015408 (2009).

    Article  CAS  Google Scholar 

  19. L. Khomenkova, Y.-T. An, D. Khomenkov, X. Portier, C. Labbé, and F. Gourbilleau, Phys. B Conds. Matter 453, 100 (2014).

    Article  CAS  Google Scholar 

  20. R. Demoulin, G. Beainy, C. Castro, P. Pareige, L. Khomenkova, C. Labbé, F. Gourbilleau, and E. Talbot, Nano Futures 2, 035005 (2018).

    Article  CAS  Google Scholar 

  21. L. Khomenkova, N. Korsunska, C. Labbé, X. Portier, and F. Gourbilleau, Appl. Surf. Sci. 471, 521 (2019).

    Article  CAS  Google Scholar 

  22. T. Torchynska, B. El Filali, L. Khomenkova, and F. Gourbilleau, J. Vac. Sci. Technol. A 37, 031503 (2019).

    Article  CAS  Google Scholar 

  23. L.G. Vega Macotela, T. Torchynska, L. Khomenkova, and F. Gourbilleau, Mater. Chem. Phys. 229, 263 (2019).

    Article  CAS  Google Scholar 

  24. V. Monteseguro, M. Rathaiah, K. Linganna, A.D. Lozano-Gorrín, M.A. Hernández-Rodríguez, I.R. Martín, P. Babu, U.R. Rodríguez-Mendoza, F.J. Manjón, A. Muñoz, C.K. Jayasankar, V. Venkatramu, and V. Lavín, Opt. Mater. Express 5, 1661 (2015).

    Article  CAS  Google Scholar 

  25. M. Pollnau, P.J. Hardman, W.A. Clarkson, and D.C. Hanna, Opt. Commun. 147, 203 (1998).

    Article  CAS  Google Scholar 

  26. E.O. Serqueira and N.O. Dantas, Opt. Lett. 39, 131 (2014).

    Article  CAS  Google Scholar 

  27. G. Yi, W. Li, J. Song, B. Mei, Z. Zhou, and L. Su, J. Eur. Ceram. Soc. 38, 3240 (2018).

    Article  CAS  Google Scholar 

  28. M. Balestrieri, S. Colis, M. Gallart, G. Ferblantier, D. Muller, P. Gilliot, P. Bazylewski, G.S. Chang, A. Slaouib, and A. Dinia, J. Mater. Chem. C 2, 9182 (2014).

    Article  CAS  Google Scholar 

  29. C.-H. Liang, O. Debieu, Y.-T. An, L. Khomenkova, J. Cardin, and F. Gourbilleau, J. Lumin. 132, 3118 (2012).

    Article  CAS  Google Scholar 

  30. P. Pirasteh, J. Charrier, Y. Dumeige, J.-L. Doualan, P. Camy, O. Debieu, Ch-H Liang, L. Khomenkova, J. Lemaitre, Y.G. Boucher, and F. Gourbilleau, J. Appl. Phys. 114, 014906 (2013).

    Article  CAS  Google Scholar 

  31. B.A. Movchan and A.V. Demchishin, Fiz. Metal. Metalloved. 28, 653 (1969).

    CAS  Google Scholar 

  32. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).

    Article  CAS  Google Scholar 

  33. P.A. Temple and C.E. Hathaway, Phys. Rev. B 7, 3685 (1973).

    Article  CAS  Google Scholar 

  34. A. Jayaraman, S.Y. Wang, S.K. Sharma, and L.C. Ming, Phys. Rev. B 48, 9205 (1993).

    Article  CAS  Google Scholar 

  35. E. Anastassakis, B. Papanicolaou, and I.M. Asher, J. Phys. Chem. Solids 36, 667 (1975).

    Article  CAS  Google Scholar 

  36. J. Adam and M.D. Rogess, Acta. Crystallogr. 12, 9511 (1959).

    Article  Google Scholar 

  37. P. Barberis, P. Quintard, and T. Merle, J. Nucl. Mater. 246, 232 (1997).

    Article  CAS  Google Scholar 

  38. J. Cui and G.A. Hope, J. Spectrosc. (2015). https://doi.org/10.1155/2015/940172.

    Article  Google Scholar 

  39. L. Liu, M. Li, Sh Cai, Y. Yang, and Y. Mai, Opt. Mater. Express 5, 756 (2015).

    Article  CAS  Google Scholar 

  40. T. Som and B. Karmakar, J. Alloys Compd. 476, 383 (2009).

    Article  CAS  Google Scholar 

  41. O. Jambois, F. Gourbilleau, A.J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, Opt. Express 18, 2230 (2010).

    Article  CAS  Google Scholar 

  42. B. Garrido, C. García, S.-Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk, Phys. Rev. B 76, 245308 (2007).

    Article  CAS  Google Scholar 

  43. M. Wojdak, M. Klik, M. Forcales, O.B. Gusev, T. Gregorkiewicz, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, Phys. Rev. B 69, 233315 (2004).

    Article  CAS  Google Scholar 

  44. S. Cueff, C. Labbé, J. Cardin, J.-L. Doualan, L. Khomenkova, K. Hijazi, O. Jambois, B. Garrido, and R. Rizk, J. Appl. Phys. 108, 064302 (2010).

    Article  CAS  Google Scholar 

  45. A. Podhorodecki, J. Misiewicz, F. Gourbilleau, J. Cardin, and C. Dufour, Electrochem. Solid State Lett. 13, K26 (2010).

    Article  CAS  Google Scholar 

  46. J. Miniscalco, J. Lightwave Technol. 9, 234 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Academy of Sciences of Ukraine (Project III-4-16), Ministry of Education and Science (Project ID: 89452), the French National Agency of Research (ANR), as well as by the CONACYT Mexico (Project 258224) and SIP-IPN Mexico (Project 20195080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Torchynska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torchynska, T., Vega Macotela, L.G., Khomenkova, L. et al. Light Emission in Nd Doped Si-Rich HfO2 Films Prepared by Magnetron Sputtering. J. Electron. Mater. 49, 3441–3449 (2020). https://doi.org/10.1007/s11664-019-07847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07847-7

Keywords

Navigation