Skip to main content
Log in

Linear and Non-linear Optical Parameters of Diluted Magnetic Semiconductor CdS0.9Mn0.1 Thin Film: Influence of the Film Thickness

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The optical properties of CdS0.9Mn0.1 thin film with different thicknesses (d = 300, 450, 600, 750, 900 and 1000 nm) were explored. The Swanepoel method was employed to calculate the thickness of the studied films. Analyses of the absorption spectra indicated the existence of allowed indirect and direct transition mechanism in the CdS0.9Mn0.1 thin films. Both the absorption coefficient and optical band gap decreased while Urbach energy increased as the film thickness increased. The Wimple–DiDomenico single oscillator model was used to describe the dispersion of the refractive index. The film thickness dependence of the dispersion parameters was studied. The optical dielectric constants, optical conductivity, electrical susceptibility, and non-liner optical parameters such as the refractive index, first-order susceptibility (\( \chi^{(1)} \)) and third-order susceptibility (\( \chi^{(3)} \)) were determined. The present results show that the film thickness is an important factor which affected the optical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.R. Shaaban, M. Abdel-Rahman, E.S. Yousef, and M.T. Dessouky, Thin Solid Films 515, 3810 (2007).

    CAS  Google Scholar 

  2. A. Zakery and S.R. Elliott, J. Non-Cryst. Solids 330, 1 (2003).

    CAS  Google Scholar 

  3. E.R. Shaaban, M.N. Salam, M. Mohamed, M.A. Abdel-Rahim, and A.Y. Abdel-Latief, J. Mater. Sci.: Mater. Electron. 28, 13379 (2017).

    CAS  Google Scholar 

  4. M. Kastner, Phys. Rev. Lett. 28, 355 (1972).

    CAS  Google Scholar 

  5. E.R. Shaaban, I. Kansal, and J.M.F. Ferreira, Phys. B: Condensed Matter 404, 3571 (2009).

    CAS  Google Scholar 

  6. E.R. Shaaban, M. Mohamed, M.N. Abd-el Salam, A.Y. Abdel-Latief, M.A. Abdel-Rahim, and E.S. Yousef, Opt. Mater 86, 318 (2018).

    CAS  Google Scholar 

  7. J. Savage, Infrared Opt. Mater. and their antireflection coatings, (Bristol: Hilger, 1985).

  8. S.R. Elliott, Physics of Amorphous Materials, 2nd ed. (Essex: Longman, 1990).

    Google Scholar 

  9. A. Borghesi, G. Guizzetti, A. Sassella, M.G. Simeone, and S. Viticoli, Il Nuovo Cimento D 14, 33 (1992).

    Google Scholar 

  10. J. Coombs, A. Jongenelis, W. van Es-Spiekman, and B. Jacobs, J. Appl. Phys. 78, 4906 (1995).

    CAS  Google Scholar 

  11. J. Solis, C.N. Afonso, S. Hyde, N. Barry, and P.M. French, Phys. Rev. Lett. 76, 2519 (1996).

    CAS  Google Scholar 

  12. E. Shaaban, Philos. Mag. 88, 781 (2008).

    CAS  Google Scholar 

  13. J. Manifacier, J. Gasiot, and J. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976).

    CAS  Google Scholar 

  14. N. Phasook, S. Kamoldirok, and W. Yindeesuk, J. Phys.: Conf. Ser. 1144, 012009 (2018).

    Google Scholar 

  15. D.E. Aimouch, S. Meskine, A. Birsan, V. Kuncser, A. Zaoui, and A. Boukortt, Mater. Chem. Phys. 213, 249 (2018).

    CAS  Google Scholar 

  16. E. Shaaban, N. El-Kabnay, A. Abou-Sehly, and N. Afify, Phys. B 381, 24 (2006).

    CAS  Google Scholar 

  17. M. Ohring, Materials Science of Thin Films, 2nd ed. (Boston: Academic Press, 2001).

    Google Scholar 

  18. E.R. Shaaban, M.A. Kaid, E.S. Moustafa, and A. Adel, J. Phys. D Appl. Phys. 41, 125301 (2008).

    Google Scholar 

  19. K. Seshan, eds., Handbook of Thin Film Deposition, 3rd ed. (Amsterdam: Elsevier, 2012)ISBN 978-1-4377-7873-1.

    Google Scholar 

  20. R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984).

    CAS  Google Scholar 

  21. T.S. Moss, Optical Properties of Semiconductors (London: Butterworth, 1959).

    Google Scholar 

  22. E. Shaaban, A. Metawa, A. Almohammedi, H. Algarni, A. Hassan, G.A. Ali, and A. Ashour, Mater. Res. Express 5, 086402 (2018).

    Google Scholar 

  23. N. Revathi, P. Prathap, and K.T.R. Reddy, Solid State Sci. 11, 1288 (2009).

    CAS  Google Scholar 

  24. E.K. Shokr and M. Wakkad, J. Mater. Sci. 27, 1197 (1992).

    CAS  Google Scholar 

  25. R. Vahalová, L. Tichý, M. Vlček, and H. Tichá, Phys. Status Solidi 181, 199 (2000).

    Google Scholar 

  26. M. Mohamed, E. Shaaban, M.N. Abd-el Salam, A. Abdel-Latief, S.A. Mahmoud, and M. Abdel-Rahim, Optik 178, 1302 (2019).

    CAS  Google Scholar 

  27. E.R. Shaaban, et al., Optik 164, 527 (2018).

    CAS  Google Scholar 

  28. J. Tauc, Amorphous and Liquid Semiconductor (New York: Plenum, 1974), pp. 159–214.

    Google Scholar 

  29. R. Achour, B. Said, and B. Boubaker, J. Semicond. 34, 0930031 (2013).

    Google Scholar 

  30. E.R. Shaaban, M.N. Abd-el Salam, M. Mohamed, M.A. Abdel-Rahim, and A.Y. Abdel-Latief, J. Mater. Sci. Mater. Electron. 28, 13379–13390 (2017).

    CAS  Google Scholar 

  31. H. Hosni, S. Fayek, S. El-Sayed, M. Roushdy, and M. Soliman, Vacuum 81, 54 (2006).

    CAS  Google Scholar 

  32. N.A. Bakr, A. Funde, V. Waman, M. Kamble, R. Hawaldar, D. Amalnerkar, S. Gosavi, and S. Jadkar, Pramana 76, 519 (2011).

    CAS  Google Scholar 

  33. E.R. Shaaban, N. Afify, and A. El-Taher, J. Alloys Compd. 482, 400 (2009).

    CAS  Google Scholar 

  34. J.I. Pankove, Optical Processes in Semiconductors (New York: Courier Corporation, 1975).

    Google Scholar 

  35. F. Yakuphanoglu, A. Cukurovali, and I. Yilmaz, Opt. Mater. 27, 1363 (2005).

    CAS  Google Scholar 

  36. S. Wemple, Phys. Rev. B 7, 3767 (1973).

    CAS  Google Scholar 

  37. D. Singh, S. Kumar, R. Thangaraj, and T. Sathiaraj, Phys. B 408, 119 (2013).

    CAS  Google Scholar 

  38. H. Ticha and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002).

    CAS  Google Scholar 

  39. F. Yakuphanoglu, A. Cukurovali, and İ. Yilmaz, Phys. B 353, 210 (2004).

    CAS  Google Scholar 

  40. S.H. Wemple, DiDomenico. Phys. Rev. B 3, 1338 (1971).

    Google Scholar 

  41. M. El-Hagary, M. Emam-Ismail, E. Shaaban, A. Al-Rashidi, and S. Althoyaib, Mater. Chem. Phys. 132, 581 (2012).

    CAS  Google Scholar 

  42. A. Walton and T. Moss, Proc. Phys. Soc. 81, 509 (1963).

    CAS  Google Scholar 

  43. H. Ticha and L. Tichy, J. Optoelectron. Adv. M. 4, 381 (2002).

    CAS  Google Scholar 

  44. E.R. Shaaban, M.M. Mahasen, M.M. Soraya, E.S. Yousef, S.A. Mahmoud, G.A.M. Ali, and H.A. Elshaikh, J. Am. Ceram. Soc. 102, 4067 (2019).

    CAS  Google Scholar 

  45. C.C. Wang, Phys. Rev. B 2, 2045 (1970).

    Google Scholar 

  46. S. Smolorz, F. Wise, and N. Borrelli, Opt. Lett. 24, 1103 (1999).

    CAS  Google Scholar 

  47. P. Sharma and S. Katyal, J. Appl. Phys. 107, 113527 (2010).

    Google Scholar 

  48. I. Zedan and M. El-Nahass, Appl. Phys. A 120, 983 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Abd-Elrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelraheem, A.M., Abd-Elrahman, M.I., Mohamed, M. et al. Linear and Non-linear Optical Parameters of Diluted Magnetic Semiconductor CdS0.9Mn0.1 Thin Film: Influence of the Film Thickness. J. Electron. Mater. 49, 1944–1956 (2020). https://doi.org/10.1007/s11664-019-07873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07873-5

Keywords

Navigation