Skip to main content
Log in

Structural, optical and magnetic behaviour of cobalt- and ferrous-doped zinc stannate nanoparticles synthesized by hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc stannate has attracted substantial interest owing to its unique properties making it a suitable ternary oxide for numerous applications. One of the most promising ternary semiconducting oxides, zinc stannate (Zn2SnO4) is more stable than binary semiconducting oxides such as ZnO and SnO2 because of its attractive physical properties and very high electrical conductivity. Nanoparticles of pure and doped Zn2SnO4 were synthesized via facile hydrothermal technique. Characterization methods such as XRD, FTIR, SEM, UV and VSM were carried out to study the behaviour of zinc stannate. X-ray diffraction analysis confirmed the phase purity and high crystalline nature of the synthesized sample. Scanning electron micrography illustrated its spherical morphology. The increment of bandgap was observed for the doped zinc stannate. The presence of functional groups was confirmed using FTIR spectrum. The magnetic property of the material was analysed using vibrational sample magnetometer and found to exhibit diamagnetic behaviour for pure zinc stannate and weak ferromagnetic property for Co- and Fe-doped Zn2SnO4. The attained results depict the excellent and exceptional structural, optical and magnetic properties which establish the use of Zn2SnO4 nanoparticles in a wide range of applications especially in the field of optoelectronic devices and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Senna, Dekker encyclopedia of nanoscience and nanotechnology, 2nd edn. (Taylor and Francis CRC Press, Florida, 2009)

    Google Scholar 

  2. K. Ahalya, N. Suriyanarayanan, S. Sangeetha, Mater. Sci. Semi. Processing. 27, 672–681 (2014)

    Article  Google Scholar 

  3. N. Tiwari, S. Doke, A. Lohar, S. Mahamuni, C. Kamal, A. Chakrabarti, R.J. Choudhary, P. Mondal, S.N. Jha, D. Bhattacharyya, J. Phys. Chem. Solids. 90, 100–113 (2016)

    Article  ADS  Google Scholar 

  4. J. Kennedy, J. Leveneur, Y. Takeda, G.V.M. Williams, S. Kupke, D.R.G. Mitchell, A. Markwitz, J.B. Metson, J. Mat. Sci. 47(3), 1127–1134 (2012)

    Article  ADS  Google Scholar 

  5. T.L. Villarreal, G. Boschloo, A. Hagfeldt, J. Phys. Chem. C. 111, 5549 (2007)

    Article  Google Scholar 

  6. M. Mary Jaculine, S.J. Das, H.J. Kim, B.C. Kim, K.H. Yu, C. JustinRaj, Mater. Lett. 111, 28–31 (2013)

    Article  Google Scholar 

  7. M. Fakhrzad, A.H. Navidpour, M. Tahari, S. Abbasi, Mater. Res. Express. 6, 095037 (2019)

    Article  ADS  Google Scholar 

  8. S. Sumithra, N.V. Jaya, J. Mater. Sci: Mater. Electron. 29, 4048 (2018)

    Google Scholar 

  9. A.R. Fattahi, M. Asemi, M. Ghanaatshoar, J. Mater. Sci: Mater. Electron. 30, 13525 (2019)

    Google Scholar 

  10. K. Srinivas, S. Manjunath Rao, P. Venugopal Reddy, Nanoscale. 3, 642 (2011)

    Article  ADS  Google Scholar 

  11. W. Yu, K. Jiang, J. Wu, J. Gan, M. Zhu, Z. Hu, J. Chu, Phys. Chem. Chem. Phys. 13, 6211 (2011)

    Article  Google Scholar 

  12. S. Sumithra, N.V. Jaya, J. Supercond. Nov. Magn. 30, 1883 (2017)

    Article  Google Scholar 

  13. C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. DaSilva, O. Chiavone-Filho, C.A.O. Nascimento, Ceram. Int. 40, 4173–4178 (2014)

    Article  Google Scholar 

  14. W. Cun, W. Xinming, J. Mater. Sci. 37, 2989 (2002)

    Article  ADS  Google Scholar 

  15. L. Allwin Joseph, J. EmimaJ eronsia, M. Mary Jaculine, S. Jerome Das, Phys. Res. Int. 2016, 6 (2016)

    Google Scholar 

  16. D.W. Kim, S.S. Shin, I.S. Cho, S. Lee, D.H. Kim, C.W. Lee, H.S. Jung, K.S. Hong, Nanoscale. 4, 557 (2012)

    Article  ADS  Google Scholar 

  17. S. Sumithra, N. Victor Jaya, Physica. 493, 35–42 (2016)

    Article  Google Scholar 

  18. N.D. Thien, L.M. Quynh, L. Van Vu et al., J. Mater. Sci: Mater. Electron. 30, 1813 (2019)

    Google Scholar 

  19. C. Chao, G. Li, J. Li, Y. Liu, Ceram. Int. 41, 1857–1862 (2015)

    Article  Google Scholar 

  20. W. Wang, H. Chai, X. Wang, X. Hu, X. Li, App. Surf. Sci. 341, 43–47 (2015)

    Article  ADS  Google Scholar 

  21. M. Mary Jaculine, C. JustinRaj, H.-J. Kim, A. Jeya Rajendran, S. Jerome Das, Mater. Sci. Semi. Processing. 25, 52–58 (2014)

    Article  Google Scholar 

  22. Z. Li, Y. Zhou, H. Yang, R. Huang, Z. Zou, Electrochim. Acta. 152, 25–30 (2015)

    Article  ADS  Google Scholar 

  23. P. Jayabal, V. Sasirekha, J. Mayandi, V. Ramakrishnan, SuperlatticesMicrostruct. 75, 775–784 (2014)

    ADS  Google Scholar 

  24. M.B. Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, J. Colloid Interface Sci. 457, 360–369 (2015)

    Article  ADS  Google Scholar 

  25. X. Zhu, L. Geng, F. Zhang, L. Liu, L. Cheng, J. Power Source. 189, 828–831 (2009)

    Article  ADS  Google Scholar 

  26. J.E. Jeronsia, L.A. Joseph, M.M. Jaculine, P.A. Vinosha, S.J. Das, J. Taibah Univ. Sci. 10, 601 (2016)

    Article  Google Scholar 

  27. V. Gandhi, R. Ganesan, H.H. AbdulrahmanSyedahamed, M. Thaiyan, J. Phys. Chem. C. 118, 9715–9725 (2014)

    Article  Google Scholar 

  28. B. Cullity, Elements of X-ray diffraction, 2nd edn. (Adisson-Wesley Publishing, Boston, 1978)

    Google Scholar 

  29. H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials (Wiley, New York, 1962)

    Google Scholar 

  30. G.K. Williamson, R.E. Smallman, Phil. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  31. J. Tauc, Amorphousand liquid semiconductors (Plenum, New York, 1974)

    Book  Google Scholar 

  32. R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi, H.R. Azimi, F.J. Sheini, Chem An Asian J. 13(9), 1228–1228 (2018)

    Article  Google Scholar 

  33. R.F. Dezfuly, R. Yousefi, F. Jamali-Sheini, Ceram. Int. 42, 7455–7746 (2016)

    Article  Google Scholar 

  34. A. Saáedi, R. Yousefi, F. Jamali-Sheini, A.K. Zak, M. Cheraghizade, M.R. Mahmoudian, M.A. Baghchesara, A.S. Dezaki, Physica E. 79, 113–118 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prince Joshua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, L.A., Ragu, R., Akilan, M. et al. Structural, optical and magnetic behaviour of cobalt- and ferrous-doped zinc stannate nanoparticles synthesized by hydrothermal method. Appl. Phys. A 126, 43 (2020). https://doi.org/10.1007/s00339-019-3220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3220-6

Keywords

Navigation