Skip to main content
Log in

Efficient materials for thin-film CdTe solar cell based on back surface field and distributed Bragg reflector

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Modifications in the physical properties of photovoltaic materials lead to enhanced conversion efficiency of a solar cell. This paper focuses on the suitable material selection for the cadmium telluride (CdTe) solar cell with special emphasis on improving the electrical parameters such as open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, and efficiency ƞ. Simulation results showed that materials having wide bandgap are more appropriate for each layer in the proposed cell compared to small-bandgap materials. Moreover, the back metal contact, which acts as electrode and also used as light reflector, usually suffers from high intrinsic absorption losses. To reduce such losses, we replaced the metal contact by a highly reflective one-dimensional distributed Bragg reflector, which increases the optical path length in greater amount over a broad span of incident angles and frequencies, and subsequently enhances the performance of the cell. The measured electrical parameters of the proposed cell under global AM 1.5G conditions are JSC = 25.036 mA/cm2, Voc = 1.065 V, FF = 87.56%, and ƞ = 23.94%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Khosroabadi, S. Keshmiri, S. Marjani, Design of a high efficiency CdS/CdTe solar cell with optimized step doping, film thickness, and carrier lifetime of the absorption layer. J. Eur. Opt. Soc. Rapid Publ. 9, 140521–140526 (2014)

    Article  Google Scholar 

  2. A.D. Khan, A.D. Khan, Optimization of highly efficient GaAs–silicon hybrid solar cell. Appl. Phys. A 124, 851 (2018)

    Article  ADS  Google Scholar 

  3. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W. Ho-Baillie, Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 26, 427–436 (2018)

    Article  Google Scholar 

  4. N. Amin, K. Sopian, M. Konagai, Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Sol. Energy Mater. Sol. Cells 91, 1202–1208 (2007)

    Article  Google Scholar 

  5. M. Hossain, M. Aliyu, M. Matin, M. Islam, K. Sopian, M. Karim et al., Prospects of Znx Cd1−x S window layer in CdTe thin film solar cells from numerical analysis, in 2012 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET) (2012), pp. 1–4

  6. H. McMaster, First Solar Series 6™ Next Generation Thin Film Solar Technology, First Solar (2019), pp. 401–06

  7. S. Benabbas, Z. Rouabah, N. Bouarissa, N. Chelali, The role of back surface field SnS layer in improvement of efficiency of CdTe thin film solar cells. Optik Int. J. Light Electron Opt. 127, 6210–6217 (2016)

    Article  Google Scholar 

  8. R. Yang, D. Wang, M. Jeng, K. Ho, D. Wang, Stable CdTe thin film solar cells with a MoOx back-contact buffer layer. Prog. Photovolt. Res. Appl. 24, 59–65 (2016)

    Article  Google Scholar 

  9. M. Dey, M. Dey, M. Matin, N. Amin, High efficient and stable ultra-thin CdTe solar cell with a potential copper telluride BSF, in 2016 9th International Conference on Electrical and Computer Engineering (ICECE) (2016), pp. 590–593

  10. S. K. Pandey, K. Kumar, Device modeling, optimization and analysis of CdTe solar cell, in 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON) (2016), pp. 295–299

  11. S. Ren, H. Li, C. Lei, C. Li, X. Yin, L. Wu et al., Interface modification to enhance electron extraction by deposition of a ZnMgO buffer on SnO2-coated FTO in CdTe solar cells. Sol Energy 177, 545–552 (2019)

    Article  ADS  Google Scholar 

  12. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134, 17396–17399 (2012)

    Article  Google Scholar 

  13. Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys 103, 084304 (2008)

    Article  ADS  Google Scholar 

  14. J. Sites, J. Pan, Strategies to increase CdTe solar-cell voltage. Thin Solid Films 515, 6099–6102 (2007)

    Article  ADS  Google Scholar 

  15. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovolt. Res. Appl. 19, 84–92 (2011)

    Article  Google Scholar 

  16. L. Zhao, Y. Zuo, C. Zhou, H. Li, H. Diao, W. Wang, A highly efficient light-trapping structure for thin-film silicon solar cells. Sol. Energy 84, 110–115 (2010)

    Article  ADS  Google Scholar 

  17. M. Yamaguchi, Multi-junction solar cells and novel structures for solar cell applications. Physica E 14, 84–90 (2002)

    Article  ADS  Google Scholar 

  18. R. C. Mackenzie, GPVDM User Manual (2016)

  19. A. Bdelkader Hima, GPVDM simulation of layer thickness effect on power conversion efficiency of CH3NH3PbI3 based planar heterojunction solar cell. Int. J. Energ. 3:37–41 (2018).

  20. H. Abdulsalam, G. Babaji, H.T. Abba, The effect of temperature and active layer thickness on the performance of CH3NH3PbI3 perovskite solar cell: a numerical simulation approach. J. Found. Appl. Phys. 5, 141–151 (2018)

    Google Scholar 

  21. A. Kanevce, T.A. Gessert, Optimizing CdTe solar cell performance: Impact of variations in minority-carrier lifetime and carrier density profile. IEEE J. Photovolt. 1, 99–103 (2011)

    Article  Google Scholar 

  22. A.D. Khan, A.D. Khan, S.D. Khan, M. Noman, Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt. Mater. 84, 195–198 (2018)

    Article  ADS  Google Scholar 

  23. L. Yu, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013)

    Article  Google Scholar 

  24. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013)

    Article  Google Scholar 

  25. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073508 (2006)

    Article  ADS  Google Scholar 

  26. K. Sarkar, K. Ghosh, N. Mandal, Effect of TCO, BSF and back contact barrier on CdS/CdTe solar cell: modeling and simulation. J. Mech Contin. Math. Sci. 13, 128–140 (2018)

    Google Scholar 

  27. M. Kuo, J. Hsing, T. Chiu, C. Li, W. Kuo, T. Lay et al., Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors. Opt. Express 20, A828–A835 (2012)

    Article  ADS  Google Scholar 

  28. S. Khosroabadi, S.H. Keshmiri, Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector. Opt. Express 22, A921–A929 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Daud Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, S.A.A., Khan, A.D., Khan, A.D. et al. Efficient materials for thin-film CdTe solar cell based on back surface field and distributed Bragg reflector. Appl. Phys. A 126, 46 (2020). https://doi.org/10.1007/s00339-019-3221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3221-5

Navigation