Skip to main content
Log in

Lipase Catalysis in Presence of Nonionic Surfactants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipase can catalyze varieties of reactions at the interface of aqueous and organic phase. Among various alternatives to modify catalytic performance of lipase, the addition of surfactants, particularly nonionic surfactants, has been widely studied. Low concentrations of nonionic surfactants augment lipase catalysis; on increasing surfactant concentration, often the catalytic performance decreases. Mole ratio of water to (nonionic) surfactant also has a profound effect on lipase activity. Catalytic abilities of some lipases are either enhanced or reduced in the presence of all nonionic surfactants of the same type, whereas for some other lipases, nonionic surfactants of the same type have mixed effect. Nonionic surfactant even changes substrate specificity of lipase. Water-in-ionic liquid microemulsion involving nonionic surfactant often performs better than other systems in improving catalytic ability of lipase. Tween and Triton surfactants often enhance enantiomeric separation catalyzed by lipase. Nonionic surfactants significantly affect activities of immobilized lipase, being present either as a component during immobilization or as a component in reaction medium. Lipases coated with nonionic surfactants act better than reverse micelles and microemulsions containing lipase. Thus, nonionic surfactants help lipase catalyzed processes in various media to enhance production of useful compounds like flavor ester, structured lipids, optically pure compounds, and noncrystalline polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANL:

Aspergillus niger lipase

AOT:

Sodium bis(2-ethylhexyl) sulfosuccinate

BCL:

Burkholderia cepacia lipase

(BMIM)(PF6):

1-Butyl-3-methylimidazolium hexafluorophosphate

2C189GE:

Glutamic acid dioleyl ester ribitol amide

C12EO4 :

Tetraethylene glycol monododecyl ether

CAL:

Candida antarctica lipase

CLA:

Colloidal liquid aphron

CMC:

Critical micellar concentration

CRL:

Candida rugosa lipase (formerly, Candida cylindracea lipase)

CTAB:

Cetyltrimethylammonium bromide

CVL:

Chromobacterium viscosum lipase

FFA:

Free fatty acid

GA:

Gum arabic

IL:

Ionic liquid

K m :

Michaelis–Menten constant

MBG:

Microemulsion-based organogel

mCLEA:

Magnetic cross-linked enzyme aggregate

OP-10:

Nonyl phenol polyoxyethylene ether

PCL:

Pseudomonas cepacia lipase

PFL:

Pseudomonas fluorescens lipase

PFRL:

Pseudomonas fragi 22-39B lipase

PPL:

Porcine pancreas lipase

RDL:

Rhizopus delemar lipase

RM:

Reverse micelle

ROL:

Rhizopus oryzae lipase

SCL:

Surfactant-coated lipase

SDS:

Sodium dodecyl sulfate

Span 20:

Sorbitan monolaurate

Span 40:

Sorbitan monopalmitate

Span 60:

Sorbitan monostearate

Span 80:

Sorbitan monooleate

TLL:

Thermomyces lanuginosus lipase

Tween 20:

Polyethylene glycol sorbitan monolaurate

Tween 40:

Polyethylene glycol sorbitan monopalmitate

Tween 60:

Polyethylene glycol sorbitan monostearate

Tween 80:

Polyethylene glycol sorbitan monooleate

Triton X-100:

Octylphenoxy polyethoxyethanol

Triton X-114:

Polyethylene glycol tert-octylphenyl ether

V max :

Maximum rate of reaction

ω 0 :

(Moles water)/(moles surfactant)

w/IL:

Water-in-ionic liquid

Z :

(Moles co-surfactant)/(moles surfactant)

References

  1. Li, Y., Li, G., & Ma, C. (2000). Enzymology in surfactant association systems. J Dispers Sci Technol, 21(4), 409–432.

    Article  CAS  Google Scholar 

  2. Belle, V., Fournel, A., Woudstra, M., Ranaldi, S., Prieri, F., & Thome, V. (2007). Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy. Biochemistry, 46(8), 2205–2214.

    Article  CAS  PubMed  Google Scholar 

  3. Fendler, J. H., & Fendler, E. J. (1975). Catalysis in Micellar and macromolecular systems. New York: Academic.

    Google Scholar 

  4. Jutila, A. K., Patkar, S. A., Vind, J., Svendsoen, A., & Kinnumen, P. K. (2000). Detergent induced conformational changes of Humicola lanuginosa lipase studied by fluorescence spectroscopy. Biophys J, 78(3), 1634–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antipova, A. S., Semenova, M. G., Belyakova, L. E., & Il’in, M. M. (2001). On relationships between molecular structure, interaction and surface behavior in mixture: small-molecule surfactant+protein. Colloids Surf B: Biointerfaces, 21(1–3), 217–230.

    Article  CAS  PubMed  Google Scholar 

  6. Delorme, V., Dhouib, R., Canaan, S., Fotiadu, F., Carrière, F., & Cavalier, J.-F. (2011). Effects of surfactants on lipase structure, activity, and inhibition. Pharm Res, 28(8), 1831–1842.

    Article  CAS  PubMed  Google Scholar 

  7. Fernández-Lorente, G., Palomo, J. M., Mateo, C., Munilla, R., Ortiz, C., Cabrera, Z., Guisán, J. M., & Fernández-Lafuente, R. (2006). Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules, 7(9), 2610–2615.

    Article  PubMed  CAS  Google Scholar 

  8. Alam, P., Rabbani, G., Badr, G., Badr, B. M., & Khan, R. H. (2015). The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase. Cell Biochem Biophys, 71(2), 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  9. Helistö, P., & Korpela, T. (1998). Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzym Microb Technol, 23(1–2), 113–117.

    Article  Google Scholar 

  10. Lai, D. T., & O’Connor, C. J. (2000). Synergistic effects of surfactants on kid pregastric lipase catalyzed hydrolysis reactions. Langmuir, 16(1), 115–121.

    Article  CAS  Google Scholar 

  11. Goswami, D., Basu, R. K., & De, S. (2010). Surfactant enhanced ricinoleic acid production using Candida rugosa lipase. Bioresour Technol, 101(1), 6–13.

    Article  CAS  PubMed  Google Scholar 

  12. Goswami, D., De, S., & Basu, J. K. (2012). Effects of process variables and additives on mustard oil hydrolysis by porcine pancreas lipase. Braz J Chem Eng, 29(3), 449–460.

    Article  CAS  Google Scholar 

  13. Sorour, N., Karboune, S., Saint-Louis, R., & Kermash, S. (2012). Lipase-catalyzed synthesis of structured phenolic lipids in solvent-free system using flaxseed oil and selected phenolic acids as substrates. J Biotechnol, 158(3), 128–136.

    Article  CAS  PubMed  Google Scholar 

  14. Syed, M. N., Iqbal, S., Bano, S., Khan, A. B., Ali-ul-Qader, S., & Azhar, A. (2010). Purification and characterization of 60 kD lipase linked with chaperonin from Pseudomonas aeruginosa BN-1. Afr J Biotechnol, 9(45), 7724–7732.

    CAS  Google Scholar 

  15. Mateos Diaz, J. C., Cordova, J., Baratti, J., Carriere, F., & Abousalham, A. (2007). Effect of nonionic surfactants on Rhizopus homothallicus lipase activity: a comparative kinetic study. Mol Biotechnol, 35(3), 205–214.

    Article  Google Scholar 

  16. Wu, H.-Y., Xu, J.-H., & Liu, Y.-Y. (2001). A practical enzymatic method for preparation of (s)-ketoprofen with a crude Candida rugosa lipase. Synth Commun, 31(22), 3491–3496.

    Article  CAS  Google Scholar 

  17. Dutta, S., & Ray, L. (2009). Production and characterization of an alkaline thermostable crude lipase from an isolated strain of Bacillus cereus C7. Appl Biochem Biotechnol, 159(1), 142–154.

    Article  CAS  PubMed  Google Scholar 

  18. dos Prazeres, J. N., Cruz, J. A. B., & Pastore, G. M. (2006). Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol, 37(4), 505–509.

    Article  Google Scholar 

  19. Polizelli, P. P., Tiera, M. J., & Bonilla-Rodriguez, G. O. (2008). Effect of surfactants and polyethylene glycol on the activity and stability of a lipase from oilseeds of Pachira aquatica. J Am Oil Chem Soc, 85(8), 749–753.

    Article  CAS  Google Scholar 

  20. Salameh, M. A., & Wiegel, J. (2010). Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica. The Open Biochemistry Journal, 4, 22–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernández-Lorente, G., Palomo, J. M., Cabrera, Z., Fernandez-Lafuente, R., & Guisán, J. M. (2007). Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnol Bioeng, 97(2), 242–250.

    Article  PubMed  CAS  Google Scholar 

  22. Qian, L. L., Chen, S. X., & Shi, B. Z. (2007). Preparation of enantiopure (R)-flurbiprofen catalyzed by a newly isolated Bacillus cereus C71. Biocatalysis and Biotransformation, 25(1), 29–34.

    Article  CAS  Google Scholar 

  23. Fendri, A., Frikha, F., Mosbah, H., Miled, N., Zouari, N., Bacha, A. B., Sayari, A., Mejdoub, H., & Gargouri, Y. (2006). Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase. Arch Biochem Biophys, 451(2), 149–159.

    Article  CAS  PubMed  Google Scholar 

  24. Bora, L., & Bora, M. (2012). Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp. isolated from hotspring of Arunachal Pradesh, India. Braz J Microbiol, 43(1), 30–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao, Y., Zhuang, Y., Yao, C., Wu, B., & He, B. (2012). Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochem Eng J, 64, 55–60.

    Article  CAS  Google Scholar 

  26. Ai, L., Huang, Y., & Wang, C. (2018). Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well. J Basic Microbiol, 58(8), 647–657.

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y., Liu, T.-J., Zhao, M.-J., Zhang, H., & Feng, F.-Q. (2019). Screening, purification, and characterization of an extracellular lipase from Aureobasidium pullulans isolated from stuffed buns steamers. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 20(4), 332–342.

    Article  CAS  Google Scholar 

  28. Zadymova, N. M., Yampol’skaya, G. P., & Filatova, L. Y. (2006). Interaction of bovine serum albumin with nonionic surfactant Tween 80 in aqueous solutions: complexation and association. Colloid Journal, 68(2), 162–172.

    Article  CAS  Google Scholar 

  29. Li, X.-L., Zhang, W.-H., Wang, Y.-D., Dai, Y.-J., Zhang, H.-T., Wang, Y., Wang, H.-K., & Lu, F.-P. (2014). A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. J Mol Catal B Enzym, 102, 16–24.

    Article  CAS  Google Scholar 

  30. Wilde, P. J., Husband, F. A., Mackie, A. R., Ridout, M. J., & Morris, V. J. (2002). Protein surfactant interactions at interfaces, their influence on interfacial structure, and the stability of foams and emulsions. Abstr Pap Am Chem Soc, 223, U453.

    Google Scholar 

  31. Guncheva, M., Zhiryakova, D., Radchenkova, N., & Kambourova, M. (2007). Effect of nonionic detergents on the activity of a thermostable lipase from Bacillus stearothermophilus MC7. J Mol Catal B Enzym, 49(1–4), 88–91.

    Article  CAS  Google Scholar 

  32. Wills, E. D. (1955). The effect of surface-active agents on pancreatic lipase. Biochem J, 60(4), 529–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mogensen, J. E., Sehgal, P., & Otzen, D. E. (2005). Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry, 44(5), 1719–1730.

    Article  CAS  PubMed  Google Scholar 

  34. Aarthy, M., Saravanan, P., Ayyadurai, N., Gowthaman, M. K., & Kamini, N. R. (2016). A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. J Mol Catal B Enzym, 125, 25–33.

    Article  CAS  Google Scholar 

  35. Yao, X., Nie, K., Chen, Y., Jiang, F., Kuang, Y., Yan, H., Fang, Y., Yang, H., Nishinari, K., & Phillips, G. O. (2018). The influence of non-ionic surfactant on lipid digestion of gum arabic stabilized oil-in-water emulsion. Food Hydrocoll, 74, 78–86.

    Article  CAS  Google Scholar 

  36. Li, Y., & Mcclements, D. J. (2011). Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. Eur J Pharm Biopharm, 79(2), 423–431.

    Article  CAS  PubMed  Google Scholar 

  37. Mesa, M., Pereañez, J. A., Preciado, L. M., & Bernal, C. (2018). How the Triton X-100 modulates the activity/stability of the Thermomyces lanuginose lipase: insights from experimental and molecular docking approaches. International Journal of Biological Macromolecules, 120(Pt B), 2410–2417.

    Article  CAS  PubMed  Google Scholar 

  38. Kuebler, D., Bergmann, A., Weger, L., Ingenbosch, K. N., & Hoffmann-Jacobsen, K. (2017). Kinetics of detergent induced activation and inhibition of a minimal lipase. J Phys Chem B, 121(6), 1248–1257.

    Article  CAS  Google Scholar 

  39. Matori, M., Asahara, T., & Ota, Y. (1991). Reaction conditions influencing positional specificity index (psi) of microbial lipases. J Ferment Bioeng, 72(6), 413–415.

    Article  CAS  Google Scholar 

  40. Holmberg, K., & Osterberg, E. (1987). Enzymatic transesterification of a triglyceride in microemulsions. In J. C. Eriksson, B. Lindman, & P. Stenius (Eds.), Progress in colloid and polymer science (vol. 74) (pp. 98–102). Berlin: Springer Verlag.

    Google Scholar 

  41. Kolisis, F. N., Valis, T. P., & Xenakis, A. (2006). Lipase-catalyzed esterification of fatty acids in nonionic microemulsions. Ann N Y Acad Sci, 613(1), 674–680.

    Google Scholar 

  42. Stamatis, H., Xenakis, A., Dimitriadis, E., & Kolisis, F. N. (1995). Catalytic behavior of Pseudomonas cepacia lipase in w/o microemulsions. Biotechnol Bioeng, 45(1), 33–41.

    Article  CAS  PubMed  Google Scholar 

  43. Valis, T. P., Xenakis, A., & Kolisis, F. N. (1992). Comparative studies of lipase from Rhizopus delemar in various microemulsion systems. Biocatalysis, 6(4), 267–279.

    Article  CAS  Google Scholar 

  44. Naoe, K., Ohsa, T., Kawagoe, M., & Imai, M. (2001). Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles. Biochem Eng J, 9(1), 67–72.

    Article  CAS  Google Scholar 

  45. Uehara, A., Imai, M., & Suzuki, I. (2008). The most favorable condition for lipid hydrolysis by Rhizopus delemar lipase in combination with a sugar–ester and alcohol W/O microemulsion system. Colloids Surf A Physicochem Eng Asp, 324(1–3), 79–85.

    Article  CAS  Google Scholar 

  46. Taden, A., Antonietti, M., & Landfester, K. (2003). Enzymatic polymerization towards biodegradable polyester nanoparticles. Macromol Rapid Commun, 24(8), 512–516.

    Article  CAS  Google Scholar 

  47. Pavlidis, I. V., Gournis, D., Papadopoulos, G. K., & Stamatis, H. (2009). Lipases in water-in-ionic liquid microemulsions: structural and activity studies. J Mol Catal B Enzym, 60(1–2), 50–56.

    Article  CAS  Google Scholar 

  48. Lima, V. M. G., Krieger, N., Mitchell, D. A., & Fontana, J. D. (2004). Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem Eng J, 18(1), 65–71.

    Article  CAS  Google Scholar 

  49. Zeng, C., Qi, S., Li, Z., Luo, R., Yang, B., & Wang, Y. (2015). Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-(Bmim)PF6 microemulsion. Bioprocess Biosyst Eng, 38(5), 939–946.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar, S., Mathur, A., Singh, V., Nandy, S., Khare, S. K., & Negi, S. (2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour Technol, 120, 300–304.

    Article  CAS  PubMed  Google Scholar 

  51. Hemachander, C., & Puvanakrishnan, R. (2000). Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochem, 35(8), 809–814.

    Article  CAS  Google Scholar 

  52. Khoo, M. L., & Ibrahim, C. O. (2009). Lipase from thermoalkalophilic Pseudomonas species as an additive in potential laundry detergent formulations. Malaysian Journal of Microbiology, 5(1), 1–5.

    Google Scholar 

  53. Jurado-Alameda, E., Román, M. G., Vaz, D. A., & Pérez, J. L. J. (2012). Fatty soil cleaning with ozone and lipases, a way to develop more environmentally friendly washing processes. Household and Personal Care Today, 7(4), 49–56.

    CAS  Google Scholar 

  54. Naganthran, A., Masomian, M., Rahman, R. N. Z. R. A., Ali, M. S. M., & Nooh, H. M. (2017). Improving the efficiency of new automatic dishwashing detergent formulation by addition of thermostable lipase, protease and amylase. Molecules, 22(9), 1577–1594.

    Article  PubMed Central  CAS  Google Scholar 

  55. Jurado, E., Bravo, V., Luzón, G., Fernández-Serrano, M., Garcia-Román, M., Vaz, D. A., & Vicaria, J. M. (2007). Hard-surface cleaning using lipases: enzyme-surfactant interactions and washing tests. J Surfactant Deterg, 10(1), 61–70.

    Article  CAS  Google Scholar 

  56. Liu, Y. Y., Xu, J. H., & Hu, Y. (2000). Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. J Mol Catal B Enzym, 10(5), 523–529.

    Article  CAS  Google Scholar 

  57. Okazaki, S., Kamiya, N., Goto, M., & Nakashio, F. (1997). Enantioselective esterification of glycidol by surfactant-lipase complexes in organic media. Biotechnol Lett, 19(6), 541–543.

    Article  CAS  Google Scholar 

  58. Bornemann, S., Crout, D. H. G., Dalton, H., & Hutchinson, D. W. (1994). The effects of surfactants on lipase-catalysed hydrolysis of esters: activities and stereoselectivity. Biocatalysis, 11(3), 191–221.

    Article  CAS  Google Scholar 

  59. Yan, H. D., Guo, B. H., Wang, Z., & Qian, J. Q. (2019). Surfactant-modified Aspergillus oryzae lipase as a highly active and enantioselective catalyst for the kinetic resolution of (RS)-1-phenylethanol. 3 Biotech, 9(7), 265.

    Article  PubMed  Google Scholar 

  60. Min, K., Kim, J., Park, K., & Yoo, Y. J. (2012). Enzyme immobilization on carbon nanomaterials: loading density investigation and zeta potential analysis. J Mol Catal B Enzym, 83, 87–93.

    Article  CAS  Google Scholar 

  61. Kartal, F. (2016). Enhanced esterification activity through interfacial activation and cross-linked immobilization mechanism of Rhizopus oryzae lipase in a nonaqueous medium. Biotechnol Prog, 32(4), 899–904.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, T., Zhao, Y., Wang, X., Li, X., & Yan, Y. (2013). A novel oriented immobilized lipase on magnetic nanoparticles in reverse micelles system and its application in the enrichment of polyunsaturated fatty acids. Bioresour Technol, 132, 99–102.

    Article  CAS  PubMed  Google Scholar 

  63. Chatterjee, S., Barbora, L., Singh Cameotra, S., Mahanta, P., & Goswami, P. (2009). Silk-fiber immobilized lipase-catalyzed hydrolysis of emulsified sunflower oil. Appl Biochem Biotechnol, 157(3), 593–600.

    Article  CAS  PubMed  Google Scholar 

  64. Tudorache, M., Negoi, A., & Parvulescu, V. I. (2017). Enhancement of the valorization of renewable glycerol: the effects ofthe surfactant-enzyme interaction on the biocatalytic synthesis of glycerol carbonate. Catalysis Today, 297(Part 1), 71–76.

    Article  CAS  Google Scholar 

  65. Bencze, L. C., Bartha-Vári, J. H., Katona, G., Toşa, M. I., Paizs, C., & Irimie, F.-D. (2016). Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production. Bioresour Technol, 200, 853–860.

    Article  CAS  PubMed  Google Scholar 

  66. Marzuki, N. H. C., Mahat, N. A., Huyop, F., Aboul-Enein, H. Y., & Wahab, R. A. (2015). Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod Process, 96, 211–220.

    Article  CAS  Google Scholar 

  67. Raghavendra, T., Panchal, N., Divecha, J., Shah, A., & Madamwar, D. Biocatalytic synthesis of flavor ester “pentyl valerate” using Candida rugosa lipase immobilized in microemulsion based organogels: effect of parameters and reusability. Biomed Res Int, Volume 2014(Article ID 353845). https://doi.org/10.1155/2014/353845.

  68. Zhang, W.-W., Wang, N., Zhou, Y.-J., He, T., & Yu, X.-Q. (2012). Enhancement of activity and stability of lipase by microemulsion-based organogels (MBGs) immobilization and application for synthesis of arylethyl acetate. J Mol Catal B Enzym, 78, 65–71.

    Article  CAS  Google Scholar 

  69. Dave, R., & Madamwar, D. (2008). Candida rugosa lipase immobilized in Triton X-100 microemulsion based organogels (MBGs) for ester synthesis. Process Biochem, 43(1), 70–75.

    Article  CAS  Google Scholar 

  70. Gilani, S. L., Najafpour, G. D., Heydarzadeh, H. D., & Moghadamnia, A. (2017). Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads. Chirality, 29(6), 304–314.

    Article  CAS  PubMed  Google Scholar 

  71. Perna, R. F., Tiosso, P. C., Sgobi, L. M., Vieira, A. M. S., Vieira, M. F., Tardioli, P. W., Soares, C. M. F., & Zanin, G. M. (2017). Effects of Triton X-100 and PEG on the catalytic properties and thermal stability of lipase from Candida rugosa free and immobilized on glyoxyl-agarose. The Open Biochemistry Journal, 11, 66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu, W. H., Fang, M., Tong, D. S., Shao, P., Xu, T. N., & Zhou, C. H. (2013). Immobilization of Candida rugosa lipase on hexagonal mesoporous silicas and selective esterification in nonaqueous medium. Biochem Eng J, 70, 97–105.

    Article  CAS  Google Scholar 

  73. de Oliveira, U. M. F., Lima de Matos, L. J. B., de Souza, M. C. M., Pinheiro, B. B., dos Santos, J. C. S., & Gonçalves, L. R. B. (2018). Effect of the presence of surfactants and immobilization conditions on catalysts’ properties of Rhizomucor miehei lipase onto chitosan. Appl Biochem Biotechnol, 184(4), 1263–1285.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang, W.-W., Yang, X.-L., Jia, J.-Q., Wang, N., Hu, C.-L., & Yu, X.-Q. (2015). Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. J Mol Catal B Enzym, 115, 83–89.

    Article  CAS  Google Scholar 

  75. Yang, H., & Zhang, W. (2019). Surfactant imprinting hyperactivated immobilized lipase as efficient biocatalyst for biodiesel production from waste cooking oil. Catalysts, 9(11), 914.

    Article  CAS  Google Scholar 

  76. Liu, Y., Liu, T., Wang, X. F., Xu, L., & Yan, Y. J. (2011). Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy Fuel, 25(3), 1206–1212.

    Article  CAS  Google Scholar 

  77. Ward, K., Xi, J., & Stuckey, D. C. (2016). Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): activity kinetics, conformation, and energetics. Biotechnol Bioeng, 113(5), 970–978.

    Article  CAS  PubMed  Google Scholar 

  78. Sánchez-Otero, M. G., Valerio-Alfaro, G., García-Galindo, H. S., & Oliart-Ros, R. M. (2008). Immobilization in the presence of Triton X-100: modifications in activity and thermostability of Geobacillus thermoleovorans CCR11 lipase. J Ind Microbiol Biotechnol, 35(12), 1687–1693.

    Article  PubMed  CAS  Google Scholar 

  79. Pencreac’h, G., Leullier, M., & Baratti, J. C. (1997). Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnol Bioeng, 56(2), 181–189.

    Article  PubMed  Google Scholar 

  80. Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Oliart-Ros, R. M. (2005). Screening purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzym Microb Technol, 37(6), 648–654.

    Article  CAS  Google Scholar 

  81. Palomo, J. M., Fuentes, M., Fernández-Lorente, G., Mateo, C., Guisán, J. M., & Fernández-Lafuente, R. (2003). General trend of lipase to self-assemble giving biomolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules, 4(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, J.-F., Lin, J.-P., Yang, L.-R., & Wu, M.-B. (2019). Enhanced performance of Rhizopus oryzae lipase by reasonable immobilization on magnetic nanoparticles and its application in synthesis 1,3-diacyglycerol. Appl Biochem Biotechnol, 188(3), 677–689.

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, J.-F., Wang, T., Lin, J.-P., Yang, L.-R., & Wu, M.-B. (2019). Preparation of high-purity 1,3-diacylglycerol using performance-enhanced lipase immobilized on nanosized magnetite particles. Biotechnol Bioprocess Eng, 24(2), 326–336.

    Article  CAS  Google Scholar 

  84. Goto, M., Noda, S., Kamiya, N., & Nakashio, F. (1996). Enzymatic resolution of racemic ibuprofen by surfactant-coated lipases in organic media. Biotechnol Lett, 18(7), 839–844.

    Article  CAS  Google Scholar 

  85. Mahmood, I., Ahmad, I., Chen, G., & Huizhou, L. (2013). A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochem Eng J, 73, 72–79.

    Article  CAS  Google Scholar 

  86. Goto, M., Kameyama, H., Goto, M., Miyata, M., & Nakashio, F. (1993). Design of surfactants suitable for surfactant-coated enzymes as catalysts in organic media. Journal of Chemical Engineering of Japan, 26(1), 109–111.

    Article  CAS  Google Scholar 

  87. Gao, Y., Chen, W., Lei, H., Liu, Y., Lin, X., & Ruan, R. (2009). Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase. Biomass Bioenergy, 33(2), 277–282.

    Article  CAS  Google Scholar 

  88. Song, B.-D., Ding, H., & Wang, S.-C. (2007). Hydrolysis of olive oil catalyzed by surfactant-coated Candida rugosa lipase in a hollow fiber membrane reactor. Biotechnol Bioprocess Eng, 12(2), 121–124.

    Article  CAS  Google Scholar 

  89. Wu, J.-C., Ding, H., Song, B.-D., Hayashi, Y., Talukder, M. M. R., & Wang, S.-C. (2003). Hydrolytic reactions catalyzed by surfactant-coated Candida rugosa lipase in an organic-aqueous two-phase system. Process Biochem, 39(2), 233–238.

    Article  CAS  Google Scholar 

  90. Song, B.-D., Xing, A.-H., Wu, J.-C., & Wang, S.-C. (2003). Stability of Candida rugosa lipase in isooctane. Chin J Chem Eng, 11(2), 217–219.

    CAS  Google Scholar 

  91. Kamiya, N., Goto, M., & Nakashio, F. (1995). Surfactant-coated lipase suitable for the enzymatic resolution of menthol as a biocatalyst in organic media. Biotechnol Prog, 11(3), 270–275.

    Article  CAS  Google Scholar 

  92. Goto, M., Kamiya, N., Miyata, M., & Nakashio, F. (1994). Enzymatic esterification by surfactant-coated lipase in organic media. Biotechnol Prog, 10(3), 263–268.

    Article  CAS  Google Scholar 

  93. Basheer, S., Mogi, K., & Nakajima, M. (1995). Surfactant-modified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol Bioeng, 45(3), 187–195.

    Article  CAS  PubMed  Google Scholar 

  94. Ko, W.-C., Wang, H.-J., Hwang, J.-S., & Hsieh, C.-W. (2006). Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system. J Agric Food Chem, 54(5), 1849–1853.

    Article  CAS  PubMed  Google Scholar 

  95. Babali, B., Aksoy, H. A., Tuter, M., & Ustun, G. (2001). Enzymatic esterification of (−)-menthol with lauric acid in isooctane by sorbitan monostearate-coated lipase from Candida rugosa. J Am Oil Chem Soc, 78(2), 173–175.

    Article  CAS  Google Scholar 

  96. Basheer, S., Cogan, U., & Nakajima, M. (1998). Esterification kinetics of long-chain fatty acids and fatty alcohols with a surfactant-coated lipase in hexane. J Am Oil Chem Soc, 75(12), 1785–1790.

    Article  CAS  Google Scholar 

  97. Isono, Y., Nabetani, H., & Nakajima, M. (1996). Preparation of lipase-surfactant complex for the catalysis of triglyceride hydrolysis in heterogeneous reaction systems. Bioprocess Eng, 15(3), 133–137.

    Article  CAS  Google Scholar 

  98. Isono, Y., Nabetani, H., & Nakajima, M. (1995). Lipase-surfactant complex as catalyst of interesterification and esterification in organic media. J Ferment Bioeng, 80(2), 170–175.

    Article  CAS  Google Scholar 

  99. Huang, S. Y., Chang, H. L., & Goto, M. (1998). Preparation of surfactant-coated lipase for the esterification of geraniol and acetic acid in organic solvents. Enzym Microb Technol, 22(7), 552–557.

    Article  CAS  Google Scholar 

  100. Dandavate, V., & Madamwar, D. (2007). Novel approach for the synthesis of ethyl isovalerate using surfactant coated Candida rugosa lipase immobilized in microemulsion based organogels. Enzym Microb Technol, 41(3), 265–270.

    Article  CAS  Google Scholar 

  101. Thakar, A., & Madamwar, D. (2005). Enhanced ethyl butyrate production by surfactant coated lipase immobilized on silica. Process Biochem, 40(10), 3263–3266.

    Article  CAS  Google Scholar 

  102. Zhong, X., Qian, J., Guo, H., Hu, Y., & Liu, M. (2014). Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol–gel supports. Bioprocess Biosyst Eng, 37(5), 813–818.

    Article  CAS  PubMed  Google Scholar 

  103. Hsieh, H. J., Nair, G. R., & Wu, W. T. (2006). Production of ascorbyl palmitate by surfactant-coated lipase in organic media. J Agric Food Chem, 54(16), 5777–5781.

    Article  CAS  PubMed  Google Scholar 

  104. Okahata, Y., & Ijiro, K. (1992). Preparation of a lipid-coated lipase and catalysis of glyceride ester syntheses in homogenous organic solvents. Bull Chem Soc Jpn, 65(9), 2411–2420.

    Article  CAS  Google Scholar 

  105. Mori, T., Kishimoto, S., Ijiro, K., Kobayashi, A., & Okahata, Y. (2001). A lipid-coated lipase as an efficient hydrolytic catalyst in the two-phase aqueous-organic system. Biotechnol Bioeng, 76(2), 157–163.

    Article  CAS  PubMed  Google Scholar 

  106. Okahata, Y., Fujimoto, Y., & Ijiro, K. (1988). Lipase-lipid complex as a resolution catalyst of racemic alcohols in organic solvents. Tetrahedron Lett, 29(40), 5133–5134.

    Article  CAS  Google Scholar 

  107. Noda, S., Kamiya, N., Goto, M., & Nakashio, F. (1997). Enzymatic polymerization catalyzed by surfactant-coated lipases in organic media. Biotechnol Lett, 19(4), 307–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Goswami.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, D. Lipase Catalysis in Presence of Nonionic Surfactants. Appl Biochem Biotechnol 191, 744–762 (2020). https://doi.org/10.1007/s12010-019-03212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03212-w

Keywords

Navigation