Skip to main content

Advertisement

Log in

Characteristics of an Acidic Phytase from Aspergillus aculeatus APF1 for Dephytinization of Biofortified Wheat Genotypes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phytases are the special class of enzymes which have excellent application potential for enhancing the quality of food by decreasing its inherent anti-nutrient components. In current study, a protease-resistant, acidic phytase from Aspergillus aculeatus APF1 was partially purified by ammonium sulfate fractionation followed by chromatography techniques. The molecular weight of partially purified phytase was in range of 25–35 kDa. The purified APF1 phytase was biochemically characterized and found catalytically active at pH 3.0 and 50 °C. The Km and Vmax values of APF1 phytase for calcium phytate were 3.21 mM and 3.78 U/mg protein, respectively. Variable activity was observed with metal ions and among inhibitors, chaotropic agents and organic solvents; phenyl glyoxal, potassium iodide, and butanol inhibited enzyme activity, respectively, while the enzyme activity was not majorly influenced by EDTA, urea, ethanol, and hexane. APF1 phytase treatment was found effective in dephytinization of flour biofortified wheat genotypes. Maximum decrease in phytic acid content was noticed in genotype MB-16-1-4 (89.98%) followed by PRH3–30-3 (82.32%) and PRH3–43-1 (81.47%). Overall, the study revealed that phytase from Aspergillus aculeatus APF1 could be effectively used in food and feed processing industry for enhancing nutritional value of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farouk, A., Banaja, A., Ahamed, N. T., AlZahrani, O., & Bazaid, S. (2015). Inducible secretion of phytate-degrading enzymes from bacteria associated with the medical plant Rosa damascena cv. Taifi using rice bran. African Journal of Biotechnology, 14, 425–433.

    Article  CAS  Google Scholar 

  2. Lee, S. H., Cho, J., Bok, J., Kang, S., Choi, Y., & Lee, P. C. (2015). Characterization, gene cloning, and sequencing of a fungal phytase, PhyA, from Penicillium oxalicum PJ3. Preparative Biochemistry and Biotechnology, 45(4), 336–347.

    Article  CAS  PubMed  Google Scholar 

  3. Moreira, K. A., Herculano, P. N., Maciel, M., & Porto, T. S. (2014). Optimization of phytase production by Aspergillus japonicus Saito URM 5633 using cassava bast as substrate in solid state fermentation. African Journal of Microbiology Research, 8, 929–938.

    Article  CAS  Google Scholar 

  4. Singh, B., & Satyanarayana, T. (2015). Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. Journal of Animal Physiology and Animal Nutrition, 99(4), 646–660.

    Article  CAS  PubMed  Google Scholar 

  5. Singh, B., Kunze, G., & Satyanarayana, T. (2011). Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnology and Molecular Biology Reviews, 6, 69–87.

    CAS  Google Scholar 

  6. Silva, E. O., & Bracarense, A. P. F. (2016). Phytic acid: from antinutritional to multiple protection factor of organic systems. Journal of Food Science, 81, 1357–1362.

    Article  CAS  Google Scholar 

  7. Holm, P. B., Kristiansen, K. N., & Pedersen, H. B. (2002). Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. The Journal of Nutrition, 132, 514–516.

    Article  Google Scholar 

  8. Kumar, V., Sangwan, P., Verma, A., & Agrawal, S. (2014). Molecular and biochemical characteristics of recombinant β-propeller Phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Applied Biochemistry and Biotechnology, 173(2), 646–659.

    Article  CAS  PubMed  Google Scholar 

  9. Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H., & Azain, M. J. (2013). Phytase, a new life for an “old” enzyme. Annual Review on Animal Biosciences, 1, 283–309.

    Article  CAS  Google Scholar 

  10. Gaind, S., & Singh, S. (2015). Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. International Biodeterioration & Biodegradation, 99, 15–22.

    Article  CAS  Google Scholar 

  11. Vohra, A., & Satyanarayana, T. (2003). Phytases: microbial sources, production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, 23(1), 29–60.

    Article  CAS  PubMed  Google Scholar 

  12. Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  13. Singh, B., & Satyanarayana, T. (2009). Characterization of a HAP–phytase from a thermophilic mould Sporotrichum thermophile. Bioresource Technology, 100, 2046–2051.

    Article  CAS  PubMed  Google Scholar 

  14. Sapna, & Singh, B. (2017). Purification and characterization of a protease-resistant phytase of Aspergillus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement. International Journal of Biological Macromolecules, 103, 458–466.

    Article  CAS  PubMed  Google Scholar 

  15. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  16. Gao, Y., Shang, C., Maroof, M., Biyashev, R., Grabau, E., Kwanyuen, P., Burton, J., & Buss, G. (2007). A modified colorimetric method for phytic acid analysis in soybean. Crop Science, 47, 1797–1803.

    Article  CAS  Google Scholar 

  17. Neira-Vielma, A. A., Aguilar, C. N., Ilyina, A., Contreras-Esquivel, J. C., Carneiro-da-Cunha, M. D. G., Michelena-Álvarez, G., & Martínez-Hernández, J. L. (2018). Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate. Biotechnology Reports, 17, 49–54.

    Article  PubMed  Google Scholar 

  18. Demir, Y., Şenol Kotan, M., Dikbaş, N., & Beydemir, Ş. (2017). Phytase from Weissella halotolerans: purification, partial characterisation and the effect of some metals. International Journal of Food Properties, 20, 2127–2137.

    CAS  Google Scholar 

  19. Dan, S. K., Nandi, A., Banerjee, G., Ghosh, P., & Ray, A. K. (2015). Purification and characterization of extracellular phytase from Bacillus licheniformis isolated from fish gut. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85, 751–758.

    Article  CAS  Google Scholar 

  20. Li, M., Wang, H., & Bun Ng, T. (2013). Isolation of a phytase with distinctive characteristics from an edible mushroom. Pleurotus eryngii, Protein and Peptide Letters, 20(4), 459–466.

    CAS  PubMed  Google Scholar 

  21. Segueilha, L., Lambrechts, C., Boze, H., Moulin, G., & Galzy, P. (1992). Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermentation and Bioengineering, 74, 7–11.

    Article  CAS  Google Scholar 

  22. Sariyska, M., Gargova, S., Koleva, L., & Angelov, A. (2005). Aspergillus niger phytase: purification and characterization. Biotechnology & Biotechnological Equipment, 19, 98–105.

    Article  CAS  Google Scholar 

  23. Gunashree, B., & Venkateswaran, G. (2015). Extracellular phytase from Aspergillus niger CFR 335: purification and characterization. Journal of Food Science and Technology, 52(7), 4558–4564.

    Article  CAS  PubMed  Google Scholar 

  24. Soni, S., Magdum, A., & Khire, J. (2010). Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World Journal of Microbiology and Biotechnology, 26(11), 2009–2018.

    Article  CAS  PubMed  Google Scholar 

  25. Greiner, R., Silva, L. G. D., & Couri, S. (2009). Purification and characterization of an extracellular phytase from Aspergillus niger 11T53A9. Brazilian Journal of Microbiology, 40(4), 795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Casey, A., & Walsh, G. (2003). Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresource Technology, 86(2), 183–188.

    Article  CAS  PubMed  Google Scholar 

  27. Mullaney, E. J., & Ullah, A. H. (2003). The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 312, 179–184.

    Article  CAS  PubMed  Google Scholar 

  28. Wyss, M., Pasamontes, L., Rémy, R., Kohler, J., Kusznir, E., Gadient, M., Müller, F., & van Loon, A. P. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus Phytase, A. niger Phytase, and A. niger pH 2.5 acid phosphatase. Applied and Environmental Microbiology, 64(11), 4446–4451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vats, P., & Banerjee, U. (2005). Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. Journal of Industrial Microbiology and Biotechnology, 32(4), 141–147.

    Article  CAS  PubMed  Google Scholar 

  30. Azeke, M. A., Greiner, R., & Jany, K. D. (2011). Purification and characterization of two intracellular phytases from the tempeh fungus Rhizopus oligosporus. Journal of Food Biochemistry, 35, 213–227.

    Article  CAS  Google Scholar 

  31. Bhavsar, K., Kumar, V. R., & Khire, J. (2011). High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. Journal of Industrial Microbiology & Biotechnology, 38(9), 1407–1417.

    Article  CAS  Google Scholar 

  32. Hesampour, A., Siadat, S. E. R., Malboobi, M. A., Mohandesi, N., Arab, S. S., & Ghahremanpour, M. M. (2015). Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Applied Biochemistry and Biotechnology, 175(5), 2528–2541.

    Article  CAS  PubMed  Google Scholar 

  33. Jain, J., & Singh, B. (2016). Characteristics and biotechnological applications of bacterial phytases. Process Biochemistry, 51, 159–169.

    Article  CAS  Google Scholar 

  34. Kumar, V., Yadav, A. N., Verma, P., Sangwan, P., Saxena, A., Kumar, K., & Singh, B. (2017). β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. International Journal of Biological Macromolecules, 98, 595–609.

    Article  CAS  PubMed  Google Scholar 

  35. Ranjan, B., Singh, B., & Satyanarayana, T. (2015). Characteristics of recombinant phytase (rSt-Phy) of the thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods. Applied Biochemistry and Biotechnology, 177(8), 1753–1766.

    Article  CAS  PubMed  Google Scholar 

  36. Tang, J., Leung, A., Leung, C., & Lim, B. L. (2006). Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biology and Biochemistry, 38, 1316–1324.

    Article  CAS  Google Scholar 

  37. Patel, K. J., Singh, A. K., Nareshkumar, G., & Archana, G. (2010). Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Applied Soil Ecology, 44, 252–261.

    Article  Google Scholar 

  38. Singh, B., Sharma, K., Kumari, A., Kumar, A., & Gakhar, S. (2018). Molecular modeling and docking of recombinant HAP-phytase of a thermophilic mould Sporotrichum thermophile reveals insights into molecular catalysis and biochemical properties. International Journal of Biological Macromolecules, 115, 501–508.

    Article  CAS  PubMed  Google Scholar 

  39. Gulati, H., Chadha, B., & Saini, H. (2007). Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiologica et Immunologica Hungarica, 54(2), 121–138.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, G., Dong, X., Wang, Z., Zhang, Q., Wang, H., & Tong, J. (2010). Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresource Technology, 101(11), 4125–4131.

    Article  CAS  PubMed  Google Scholar 

  41. Monteiro, P. S., Guimarães, V. M., Melo, R. R. D., & Rezende, S. T. D. (2015). Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance. Brazilian Journal of Microbiology, 46(1), 251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tripathi, P., Garg, S., Panwar, D., Kaira, G. S., Kumar, R., & Kapoor, M. (2017). Phytase from Citrobacter koseri PM-7: cost-effective production using agro-industrial residues. Biochemical Characterization and Application in de-Phytinization, Waste and biomass Valorization, 8, 1105–1118.

    Article  CAS  Google Scholar 

  43. Díaz-Gómez, J., Twyman, R. M., Zhu, C., Farré, G., Serrano, J. C., Portero-Otin, M., Muñoz, P., Sandmann, G., Capell, T., & Christou, P. (2017). Biofortification of crops with nutrients: factors affecting utilization and storage. Current Opinion in Biotechnology, 44, 115–123.

    Article  PubMed  CAS  Google Scholar 

  44. Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: progress toward a more nourishing future. Global Food Security, 2, 9–17.

    Article  Google Scholar 

  45. Kalsi, H. K., Singh, R., Dhaliwal, H. S., & Kumar, V. (2016). Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications, 3. Biotech, 6, 64.

    Google Scholar 

  46. Kaur, R., Saxena, A., Sangwan, P., Yadav, A. N., Kumar, V., & Dhaliwal, H. S. (2017). Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Bioscience, 9, 68–76.

    Article  Google Scholar 

  47. Nielsen, A. V., & Meyer, A. S. (2016). Phytase mediated mineral solubilization from cereals under in vitro gastric conditions. Journal of the Science of Food and Agriculture, 96(11), 3755–3761.

    Article  CAS  PubMed  Google Scholar 

  48. Vashishth, A., Ram, S., & Beniwal, V. (2017). Cereal phytases and their importance in improvement of micronutrients bioavailability, 3. Biotech, 7, 42.

    Google Scholar 

  49. Gupta, R. K., Gangoliya, S. S., & Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–684.

    Article  CAS  PubMed  Google Scholar 

  50. Weaver, C. M., & Kannan, S. (2002). Phytate and mineral bioavailability. Food Phytate, 211–223.

  51. Nielsen, A., Tetens, I., & Meyer, A. (2013). Potential of phytase-mediated iron release from cereal-based foods: a quantitative view. Nutrients, 5(8), 3074–3098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akhter, S., Saeed, A., Irfan, M., & Malik, K. A. (2012). In vitro dephytinization and bioavailability of essential minerals in several wheat varieties. Journal of Cereal Science, 56, 741–746.

    Article  CAS  Google Scholar 

  53. Hellström, A. M., Almgren, A., Carlsson, N. G., Svanberg, U., & Andlid, T. A. (2012). Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa. International Journal of Food Microbiology, 153(1-2), 73–77.

    Article  PubMed  CAS  Google Scholar 

  54. Sanz-Penella, J. M., Laparra, J. M. S., Sanz, Y., & Haros, M. (2012). Assessment of iron bioavailability in whole wheat bread by addition of phytase-producing bifidobacteria. Journal of Agricultural and Food Chemistry, 60(12), 3190–3195.

    Article  CAS  PubMed  Google Scholar 

  55. Bedford, M. R. (2000). Exogenous enzymes in monogastric nutrition—their current value and future benefits. Animal Feed Science and Technology, 86, 1–13.

    Article  CAS  Google Scholar 

  56. Barrier-Guillot, B., Casado, P., Maupetit, P., Jondreville, C., Gatel, F., & Larbier, M. (1996). Wheat phosphorus availability: 2—in vivo study in broilers and pigs; relationship with endogenous phytasic activity and phytic phosphorus content in wheat. Journal of the Science of Food and Agriculture, 70, 69–74.

    Article  CAS  Google Scholar 

  57. Qian, H., Kornegay, E., & Denbow, D. (1997). Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets. Poultry Science, 76(1), 37–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support was provided by the Department of Biotechnology (DBT), Govt. of India (Grant No. BT/AGR/BIOFORTI/PHII/NIN/2011) to carry out this work; Ministry of Food Processing Industries (MoFPI), Govt. of India, provided “infrastructural facility development” at Eternal University; and Head, Department of Microbiology, Maharshi Dayanand University, Rohtak permitted leading author to carry out part of this work at the Department.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Verma, M., Singh, B. et al. Characteristics of an Acidic Phytase from Aspergillus aculeatus APF1 for Dephytinization of Biofortified Wheat Genotypes. Appl Biochem Biotechnol 191, 679–694 (2020). https://doi.org/10.1007/s12010-019-03205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03205-9

Keywords

Navigation